CH 3 homework solutions
3.3
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From this, we may conclude that the fundamental frequency of z(t) is 271/6 = 7 /3. The
non-zero Fourier series coeffcients of z(t) are:
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Since z(t) is real and odd (clue 1), its Fourier series coefficients a. are purely imaginary and
odd (See Table 3.1). Therefore, ay = —a_j and ag = 0. Also, since it is given that a; = 0
for |k| > 1, the only unknown Fourier series coefficients are a; and a..,. Using Parseval’s

relation,
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for the given signal we have
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Using the information given in clue (4) along with the above equation,
lai? +laaP=1 = 2af*=1
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The two possible signals which satisfy the given information are
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Both z;(1 —t) and z,(t — 1) are periodic with fundemental period 7, = f—’l' Since y(t) is
a linear combination of z,(1 —t) and z,(t — 1), it is also periodic with fundemental period
T = f}—’l' Therefore, wy = wy.
Since x(t) P ay, using the results in Table 3.1 we have
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3.11

Since the Fourier series coefficients repeat every N = 10, we have a; = a;; = 5. Further-
more, since z[n| is real and even, ay is also real and even. Therefore, ¢.; = a_; = 5. We are

also given that
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Using Parseval’s relation,
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Therefore, a; = 0 for k = 2,--- 8. Now using the synthesis eq.(3.94), we have
;2 3 2
z[n] = Z apel N E = Z ael 0k
k=<N> k=-1
= 5¢/ 5" 4 eI 1"
™
= 10cos(—-n)
J

3.13

Let us first evaluate the Fourier series coefficients of z(t). Clearly, since z(t) is real and
odd, ay is purely imaginary and odd. Therefore, ag = 0. Now,
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Clearly, the above expression evaluates to zero for all even values of k. Therefore,
. {0, k=0,4£2,44,---
k= 2 e ‘
s k=+1,43, 5,

When z(t) is passed through an LTI system with frequency response H(jw), the output
y(t) is given by (see Section 3.8)
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where wg = g,’I = %. Since a; is non zero only for odd values of k, we need to evaluate the

above summation only for odd k. Furthermore, note that
. : sin(km)
= H(jk(n/4)) = ———=
H(kwn) = HK(r/4) = Te 00
is always zero for odd values of k. Therefore,

y(t) = 0.

3.14

The signal z[n] is periodic with period N = 4. Its Fourier series coeflicients are
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From the results presented in Section 3.8, we know that the output y[n] is given by

3
y[ln] = Zakﬂ(ei(h/ﬂk)cjk(‘zx/-a)n
i P | . (S3.14-1)
= %H(e’")efﬂ + LH(e7/2)ei(n/2)
+1H(e73%/12))e137/2) 4 L[ (e3(m))e2(x)

From the given information, we know that y[n] is
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Comparing this with eq. (S3.14-1), we have
H(e’?) = H(e™) =0

and

H(P?) =2¢7%, and H(e¥%) =274



