

CH 3 homework solutions

3.3

The given signal is

$$\begin{aligned} x(t) &= 2 + \frac{1}{2}e^{j(2\pi/3)t} + \frac{1}{2}e^{-j(2\pi/3)t} - 2je^{j(5\pi/3)t} + 2je^{-j(5\pi/3)t} \\ &= 2 + \frac{1}{2}e^{j2(2\pi/6)t} + \frac{1}{2}e^{-j2(2\pi/6)t} - 2je^{j5(2\pi/6)t} + 2je^{-j5(2\pi/6)t} \end{aligned}$$

From this, we may conclude that the fundamental frequency of $x(t)$ is $2\pi/6 = \pi/3$. The non-zero Fourier series coefficients of $x(t)$ are:

$$a_0 = 2, \quad a_2 = a_{-2} = \frac{1}{2}, \quad a_5 = a_{-5} = -2j$$

3.7

Since $x(t)$ is real and odd (clue 1), its Fourier series coefficients a_k are purely imaginary and odd (See Table 3.1). Therefore, $a_k = -a_{-k}$ and $a_0 = 0$. Also, since it is given that $a_k = 0$ for $|k| > 1$, the only unknown Fourier series coefficients are a_1 and a_{-1} . Using Parseval's relation,

$$\frac{1}{T} \int_{-T/2}^{T/2} |x(t)|^2 dt = \sum_{k=-\infty}^{\infty} |a_k|^2,$$

for the given signal we have

$$\frac{1}{2} \int_0^2 |x(t)|^2 dt = \sum_{k=-1}^1 |a_k|^2.$$

Using the information given in clue (4) along with the above equation,

$$|a_1|^2 + |a_{-1}|^2 = 1 \quad \Rightarrow \quad 2|a_1|^2 = 1$$

Therefore,

$$a_1 = -a_{-1} = \frac{1}{\sqrt{2}j} \quad \text{or} \quad a_1 = -a_{-1} = -\frac{1}{\sqrt{2}j}$$

The two possible signals which satisfy the given information are

$$x_1(t) = \frac{1}{\sqrt{2}j}e^{j(2\pi/2)t} - \frac{1}{\sqrt{2}j}e^{-j(2\pi/2)t} = -\sqrt{2}\sin(\pi t)$$

and

$$x_2(t) = -\frac{1}{\sqrt{2}j}e^{j(2\pi/2)t} + \frac{1}{\sqrt{2}j}e^{-j(2\pi/2)t} = \sqrt{2}\sin(\pi t)$$

3.10

Both $x_1(1-t)$ and $x_1(t-1)$ are periodic with fundamental period $T_1 = \frac{2\pi}{\omega_1}$. Since $y(t)$ is a linear combination of $x_1(1-t)$ and $x_1(t-1)$, it is also periodic with fundamental period $T_2 = \frac{2\pi}{\omega_1}$. Therefore, $\omega_2 = \omega_1$.

Since $x_1(t) \xrightarrow{FS} a_k$, using the results in Table 3.1 we have

$$x_1(t+1) \xrightarrow{FS} a_k e^{jk(2\pi/T_1)}$$

$$x_1(t-1) \xrightarrow{FS} a_k e^{-jk(2\pi/T_1)} \Rightarrow x_1(-t+1) \xrightarrow{FS} a_{-k} e^{-jk(2\pi/T_1)}$$

Therefore,

$$x_1(t+1) + x_1(1-t) \xrightarrow{FS} a_k e^{jk(2\pi/T_1)} + a_{-k} e^{-jk(2\pi/T_1)} = e^{-j\omega_1 k} (a_k + a_{-k})$$

3.11

Since the Fourier series coefficients repeat every $N = 10$, we have $a_1 = a_{11} = 5$. Furthermore, since $x[n]$ is real and even, a_k is also real and even. Therefore, $a_1 = a_{-1} = 5$. We are also given that

$$\frac{1}{10} \sum_{n=0}^9 |x[n]|^2 = 50.$$

Using Parseval's relation,

$$\begin{aligned} \sum_{k=-N}^N |a_k|^2 &= 50 \\ \sum_{k=-1}^8 |a_k|^2 &= 50 \\ |a_{-1}|^2 + |a_1|^2 + a_0^2 + \sum_{k=2}^8 |a_k|^2 &= 50 \\ a_0^2 + \sum_{k=2}^8 |a_k|^2 &= 0 \end{aligned}$$

Therefore, $a_k = 0$ for $k = 2, \dots, 8$. Now using the synthesis eq.(3.94), we have

$$\begin{aligned} x[n] &= \sum_{k=-N}^N a_k e^{j \frac{2\pi}{N} kn} = \sum_{k=-1}^8 a_k e^{j \frac{2\pi}{10} kn} \\ &= 5e^{j \frac{2\pi}{10} n} + 5e^{-j \frac{2\pi}{10} n} \\ &= 10 \cos\left(\frac{\pi}{5} n\right) \end{aligned}$$

3.13

Let us first evaluate the Fourier series coefficients of $x(t)$. Clearly, since $x(t)$ is real and odd, a_k is purely imaginary and odd. Therefore, $a_0 = 0$. Now,

$$\begin{aligned} a_k &= \frac{1}{8} \int_0^8 x(t) e^{-j(2\pi/8)kt} dt \\ &= \frac{1}{8} \int_0^4 e^{-j(2\pi/8)kt} dt - \frac{1}{8} \int_4^8 e^{-j(2\pi/8)kt} dt \end{aligned}$$

$$= \frac{1}{j\pi k} [1 - e^{-j\pi k}]$$

Clearly, the above expression evaluates to zero for all even values of k . Therefore,

$$a_k = \begin{cases} 0, & k = 0, \pm 2, \pm 4, \dots \\ \frac{2}{j\pi k}, & k = \pm 1, \pm 3, \pm 5, \dots \end{cases}$$

When $x(t)$ is passed through an LTI system with frequency response $H(j\omega)$, the output $y(t)$ is given by (see Section 3.8)

$$y(t) = \sum_{k=-\infty}^{\infty} a_k H(jk\omega_0) e^{jk\omega_0 t}$$

where $\omega_0 = \frac{2\pi}{T} = \frac{\pi}{4}$. Since a_k is non zero only for odd values of k , we need to evaluate the above summation only for odd k . Furthermore, note that

$$H(jk\omega_0) = H(jk(\pi/4)) = \frac{\sin(k\pi)}{k(\pi/4)}$$

is always zero for odd values of k . Therefore,

$$y(t) = 0.$$

3.14

The signal $x[n]$ is periodic with period $N = 4$. Its Fourier series coefficients are

$$\begin{aligned} a_k &= \frac{1}{4} \sum_{n=0}^3 x[n] e^{-j\frac{2\pi}{4}kn} \\ &= \frac{1}{4}, \quad \text{for all } k \end{aligned}$$

From the results presented in Section 3.8, we know that the output $y[n]$ is given by

$$\begin{aligned} y[n] &= \sum_{k=0}^3 a_k H(e^{j(2\pi/4)k}) e^{jk(2\pi/4)n} \\ &= \frac{1}{4} H(e^{j0}) e^{j0} + \frac{1}{4} H(e^{j(\pi/2)}) e^{j(\pi/2)n} \\ &\quad + \frac{1}{4} H(e^{j(3\pi/2)}) e^{j(3\pi/2)n} + \frac{1}{4} H(e^{j\pi}) e^{j\pi n} \end{aligned} \tag{S3.14-1}$$

From the given information, we know that $y[n]$ is

$$\begin{aligned} y[n] &= \cos\left(\frac{5\pi}{2}n + \frac{\pi}{4}\right) \\ &= \cos\left(\frac{\pi}{2}n + \frac{\pi}{4}\right) \\ &= \frac{1}{2} e^{j(\frac{\pi}{2}n + \frac{\pi}{4})} + \frac{1}{2} e^{-j(\frac{\pi}{2}n + \frac{\pi}{4})} \\ &= \frac{1}{2} e^{j(\frac{\pi}{2}n + \frac{\pi}{4})} + \frac{1}{2} e^{j(3\frac{\pi}{2}n - \frac{\pi}{4})} \end{aligned}$$

Comparing this with eq. (S3.14-1), we have

$$H(e^{j0}) = H(e^{j\pi}) = 0$$

and

$$H(e^{j\frac{\pi}{2}}) = 2e^{j\frac{\pi}{4}}, \quad \text{and} \quad H(e^{j3\frac{\pi}{2}}) = 2e^{-j\frac{\pi}{4}}$$