Signals and Systems Final Examination

Name: ____

Student ID:

94/01/13

1. (5%) Determine the fundamental period of the discrete-time signal $x[n] = e^{j(2\pi/5)n} - e^{j(3\pi/4)n}$.

2. (10%) Please determine the signal y(t) as the convolution of the following two signals: $x(t) = e^{3t}u(-t)$ and h(t) = u(t-2).

3. (10%) Consider the signal $x(t) = 2[1 + \cos w_0 t + \sin(2w_0 t + \frac{\pi}{4})]$, whose fundamental signal is w_0 . Please determine the corresponding Fourier series coefficients.

4. (10%) Consider that a discrete-time signal x[n] is periodic with period L, the fundamental frequency w_0 becomes ______. If a_k is the Fourier series coefficients, the discrete-time Fourier series representation of x[n] can be expressed as

x[n] =_____

where a_k can be determined from x[n] by the use of the equation

 $a_k =$ _____.

5. (10%) Consider the signal

$$x[n] = \sin w_0 n = \frac{1}{2j} (e^{jw_0 n} - e^{-jw_0 n}), \text{ with } w_0 = \frac{2\pi}{5}.$$

Please determine the Fourier transform of x[n] and depict $X(e^{jw})$ within one period.

6. (16%) Consider the figure shown below for a system for sampling a band-limited signal x(t) (X(jw) = 0 for $|w| > w_M)$ and reconstruction. Let w_s denote the sampling frequency. That is, $w_s = 2\pi/T$. Please draw the spectra of following signals under two conditions - $w_s > 2w_M$ and $w_s < 2w_M$: (a) representative spectrum for x(t); (b) corresponding spectrum for $x_p(t)$; (c) ideal lowpass filter to recover X(jw) from $X_p(jw)$; (d) spectrum of $x_r(t)$.

7. (20%) The continuous-time Fourier transforms of $x_c(t)$ and $y_c(t)$ are $X_c(jw)$ and $Y_c(jw)$, respectively, while the discrete-time Fourier transform of $x_d[n]$ and $y_d[n]$ are $X_d(e^{j\Omega})$ and $Y_d(e^{j\Omega})$, respectively. The relationships between these signals are shown in the figure below.

$$x_{c}(t) \qquad \begin{array}{c} C/D \\ conversion \end{array} \xrightarrow{x_{d}[n]=x_{c}(nT)} \\ T \end{array} \qquad \begin{array}{c} Discrete-time \\ system \end{array} \xrightarrow{y_{d}[n]=y_{c}(nT)} \\ D/C \\ conversion \end{array} \xrightarrow{y_{c}(t)} \\ Conversion \\ T \\ T \end{array}$$

Since $x_p(t) = \sum_{n=-\infty}^{\infty} x_c(nT)\delta(t-nT)$ and since the transform of $\delta(t-nT)$ is _____, it follows that

$$X_p(jw) = \sum_{n=-\infty}^{\infty} \underline{\qquad}, X_d(e^{j\Omega}) = \sum_{n=-\infty}^{\infty} x_d[n] \underline{\qquad} = \sum_{n=-\infty}^{\infty} x_c(nT) \underline{\qquad}$$

Note that $X_d(e^{j\Omega})$ and $X_p(jw)$ are related through $X_d(e^{j\Omega}) = X_p(____)$ and

$$X_p(jw) = \frac{1}{T} X_c(___), X_d(e^{j\Omega}) = \frac{1}{T} X_c(___)$$

Therefore, $X_d(e^{j\Omega})$ is a ______ version of $X_p(jw)$.

8. (10%) Use Tables 4.1 and 4.2 to help determine the Fourier transform of the following signal:

$$x(t) = t(\frac{\sin t}{\pi t})^2$$

9. (10%) Use Tables 5.1 and 5.2 to help determine x[n] when its Fourier transform is

$$X(e^{jw}) = \frac{1}{1 - e^{-jw}} \left(\frac{\sin \frac{3}{2}w}{\sin \frac{w}{2}}\right) + 5\pi\delta(w), \quad -\pi < w \le \pi.$$

10. (5%) Determine the Nyquist rate corresponding the following signal:

 $x(t) = 1 + \cos(2000\pi t) + \sin(4000\pi t).$

11. (8%) Let x[n] be a real and odd periodic signal with period N = 7 and Fourier coefficients a_k . Given that $a_{15} = j$, $a_{16} = 2j$, $a_{17} = 3j$, determine the values of a_0 , a_{-1} , a_{-2} , and a_{-3} .

12. (5%) The definition of a sinc function is $\operatorname{sinc}(\theta) = \frac{\sin \pi \theta}{\pi \theta}$. Please rewrite the following signal in terms of the sinc functions. functions : $\sin 2Wt$

$$\frac{\sin 2Wt}{\pi t} = \underline{\qquad}.$$