Yuntech EE - Signals and Systems Final Exam

Name: _

Student ID: _____ 95/01/17

- 1. (Chapter 3, 10%) In Fourier series representation of a periodic continuous-time signal, the truncated Fourier series approximation of a discontinuous signal will in general exhibit high-frequency ripples and overshoot near the discontinuities. This is called the *Gibbs phenomenon*. Please explain why this phenomenon does not exist in the Fourier series representation of a periodic discrete-time signal.
- 2. (Chapter 3, 10%) Let x[n] be a **real and odd** periodic signal with period N = 7 and Fourier coefficients a_k . Given that $a_8 = j$, $a_9 = 2j$, $a_{10} = 3j$, determine the values of a_{0}, a_{-1}, a_{-2} , and a_{-3} .
- 3. (Chapter 3, 10%) Let a_k be the Fourier coefficient of the discrete-time **real** signal x[n] with period N. What is the Fourier coefficient of the signal x[-n] x[n-3]?
- 4. (Chapter 4, 10%) The definition of a **sinc** function is $\operatorname{sinc}(\theta) = \frac{\sin \pi \theta}{\pi \theta}$. Please rewrite the following signal $\frac{\sin(3Wt)}{2\pi t}$ in terms of the sinc functions.
- 5. (Chapter 4, 10%) Determine the Fourier transform of the periodic signal $1 + \cos(6\pi t)$.
- 6. (Chapter 4, 20%) Consider the Fourier transform pair e^{-|t|} ↔ 2/(1+ω²).
 (a) Use the appropriate Fourier transform properties to find the Fourier transform of te^{-|t|}.
 (b) Use the result from part (a), along with the *duality property*, to determine the Fourier transform of 4t/(1+t²)².
- 7. (Chapter 5, 10%) Determine the signal x[n] whose Fourier transform is $X(e^{jw}) = e^{-jw/2}$ for $-\pi \le w \le \pi$.
- 8. (Chapter 5, 10%) Please determine the Fourier transform of the signal $x[n] = \delta[n-1] + \delta[n+1]$ and depict $X(e^{jw})$.
- 9. (Chapter 5, 10%) Use Tables 5.1 and 5.2 to determine (a) the Fourier transform of the signal $x[n] = n(\frac{1}{2})^n u[n]$ and (b) the value of $X(e^{j0})$.
- 10. (Chapter 7, 10%) Determine the **Nyquist rate** corresponding the signal $x(t) = 1 + \cos(2000\pi t) + \sin(3000\pi t)$.
- 11. (Chapter 7, 10%) The signal y(t) is generated by convolving a band-limited signal $x_1(t)$ with another band-limit signal $x_2(t)$, that is, $y(t) = x_1(t) * x_2(t)$, where $X_1(jw) = 0$ for $|w| > 1000\pi$ and $X_2(jw) = 0$ for $|w| > 2000\pi$. Impulse-train sampling is performed on y(t) to obtain

$$y_p(t) = \sum_{n=-\infty}^{\infty} y(nT)\delta(t - nT).$$

Specify the range of values for the sampling period T which ensures that y(t) is recoverable from $y_p(t)$.

Good luck and happy winter vacation!