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Abstract

Gray theory recently has received a great deal of attention because it has been

successfully applied to many disciplines. In this paper, a new class of finite-state

vector quantizers (FSVQs) whose next-state function design is based on the gray

prediction model (GPM), named the GPMVQs, is proposed. In GPMVQs, the GPM

with a single variable and a first-order differential equation is used to design the

next-state function for constructing the state codebooks in FSVQs. Four pixels in

each row or column of previously coded blocks are the inputs of the GPM and then

the corresponding output predicts a pixel in the border of current block. With the

western and northern blocks of the current block, seven border pixels are predicted

and then used to choose the codewords in the super codebook to construct the state

codebook. Simulation results show that the proposed GPMVQs can outperform the

side-match vector quantizers, especially for the less-complicated images.

Keywords: gray theory, finite-state vector quantization, gray prediction model, next-state
function.
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1 Introduction

Vector quantization (VQ) is an efficient technique for image compression, especially for

the applications of low bit rate coding. It has been dramatically developed since its in-

vention in 1984 [1]. Recently, the finite-state vector quantizers (FSVQs) [2] was proposed

to improve the ordinary/memoryless VQ techniques. Figure 1 shows the block diagram of

typical FSVQs. Given a vector of dimension k which is indexed by i, the encoder maps

a k-dimensional source vector xi into a channel symbol (the index of codeword) qi from a

finite alphabet. Here each channel symbol qi corresponds to a codeword x̂i in a selected

state codebook SCi. The previously coded blocks x̂i−1, x̂i−2, . . . , x̂i−j are buffered and used

in the next-state function to determine the state si of the current block. In the decoder

of an FSVQ, all the components are identical to those of the encoder of an FSVQ. If we

assume that the channel is noiseless and the initial state of the encoder is known in the

decoder, the next-state function of the decoder can keep track of the encoder states. There-

fore, the reproduction vectors produced by the decoder are identical to the corresponding

reproduction vectors determined by the encoder. Since the codeword for an input vector is

found in the state codebook, which is much smaller than the super codebook, the encoding

time and bit rate are reduced. Compared with the ordinary VQ, the FSVQs can achieve a

higher compression ratio while the image quality is negligibly degraded.

There are several design algorithms of FSVQs [2, 3]. It seems that most of the algorithms

are difficult to handle spatial contiguity in images. In attempt to force the encoder to

optimize edge contiguity across block boundaries without doing explicit edge detection, Kim

proposed the side match vector quantizers (SMVQs) and overlap match vector quantizers

(OMVQs) [4] which are two classes of FSVQs. The performances of SMVQs and OMVQs
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schemes are better than or comparable with that of ordinary VQ. It can be drastically

improved when they are used together with variable length noiseless coding. In SMVQs,

the boundary pixels neighboring to the northern and western blocks are supposed to be

equal. In reality, this criterion is not always satisfied. It only considers the correlation

between two adjacent pixels, in which the information may not be enough for prediction in

an active area. If more pixels can be used for prediction, better result can be expected.

Gray theories are proposed by Den in 1982 [6] and have been widely and successfully

applied to many applications such as economics, geography, weather, and automatic control

[7-10]. There are two major types of applications: (1) short term prediction based on

gray model (GM) and (2) multi-purpose decision based on gray relationships. Instead of

forming a knowledge base, the GM constructs some differential equations to characterize

the controlled system behavior. The GM with a single variable and a first-order differential

equation, abbreviated by GM(1,1), predicts the future behavior of the system by using

only a few past output data and solving the differential equations. The GM(1,1) has

been successfully applied to the motion estimation issue for encoding video data [11] and

outperforms other search algorithms. The chip implementation of this algorithm also has

been proposed recently [12].

In conventional SMVQs, only the boundary pixels of the previously coded blocks are

used for prediction. However, those pixels may not be sufficient to represent the previous

blocks. In order to obtain better prediction on the border pixels in the current block, here

we propose a gray-theory-based prediction model, which uses four pixels in the same row

or column in previously coded blocks to predict the pixels in the border of current block.

This scheme is called the GPM-based VQs (GPMVQs) and is considered as a new class

of FSVQs. Simulation results show that the proposed gray model is an efficient method
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in designing the next-state function for FSVQs. The coding performance of the proposed

scheme is superior to SMVQs, especially for less complicated images.

2 Gray Prediction Model

In this section we briefly review the GM(1,1) and discuss how to apply GM(1,1) to the next-

state function design in FSVQs. First of all, the steps of mathematics analysis for GM(1,1)

are shown below: Let x(0)={x(0)(1), x(0)(2), . . ., x(0)(n)} be an original data sequence

which contains n data, where x(0)(i) represents the ith system output. The new sequence

x(1)={x(1)(1), x(1)(2), . . ., x(1)(n)} is generated with a one-stage accumulated generating

operation (AGO) by

AGO{x(0)} = x(1) = {
1∑

k=1

x(0)(k),
2∑

k=1

x(0)(k), . . . ,
n∑

k=1

x(0)(k)}. (1)

According to GM(1,1), we have the first-order difference equation x(0)(k) + az(1)(k) = b,

and thus

x(0)(k) = −az(1)(k) + b, for k = 1, 2, 3, . . . , n (2)

where a and b are the parameters of GM(1,1) that we want to determine and

z(1)(k) = αx(1)(k) + (1− α)x(1)(k − 1), for k ≥ 2, α ∈ [0, 1]. (3)

The factor α here is usually given as 0.5 [6], which means that z(1)(k) is affected by x(1)(k)

and x(1)(k − 1) equally. In certain cases, α values can be varied for different k to pursuit

higher predicting accuracy [13, 14].

The matrix form of Equation 2 is represented by

XN = Zâ, (4)
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where

XN =




x(0)(2)
x(0)(3)
x(0)(4)

...
x(0)(n)




, Z =




−z(1)(2) 1
−z(1)(3) 1
−z(1)(4) 1

...
−z(1)(n) 1




, â =

[
a
b

]
. (5)

The values of a and b can be derived via the least square criterion as,

[
a
b

]
= (ZT Z)−1ZT XN . (6)

That is,

a =

∑n
k=2 z(1)(k)

∑n
k=2 x(0)(k)− (n− 1)

∑n
k=2 z(1)(k)x(0)(k)

(n− 1)
∑n

k=2[z
(1)(k)]2 − [

∑n
k=2 z(1)(k)]2

(7)

and

b =

∑n
k=2[z

(1)(k)]2
∑n

k=2 x(0)(k)−∑n
k=2 z(1)(k)

∑n
k=2 z(1)(k)x(0)(k)

(n− 1)
∑n

k=2[z
(1)(k)]2 − [

∑n
k=2 z(1)(k)]2

. (8)

When the values a and b are derived, we substitute them into the solution of Equation 2

and obtain the general solution as follows:

x̂(1)(k) = [x(0)(1)− b

a
]e−a(k−1) +

a

b
, (8)

in which x̂(0)(1) = x(1)(1), and hence the predicted values, x̂(0)(k) for k ≥ 1, can be

calculated by using the inverse AGO. That is,

x̂(0)(k) = x̂(1)(k)− x̂(1)(k − 1) = (1− ea)[x(0)(1)− b

a
]e−a(k−1), for k ≥ 2. (9)

Therefore, we can predict the values x̂(0)(k) for k > n.

Basically, the major computation overhead is due to the determination of two param-

eters a and b in Equations (7) and (8), and is dependent on the number of data, n. Once

two parameters have been derived, the calculation for the predicted values are much easier.

Two factors affect the accuracy of this prediction method: the data type and how many

data are used in the prediction model. Monotonically and/or gradually changed data and

5



adequate previous data are helpful in increasing the accuracy of the gray prediction model

[13].

3 GPM Based Next-State Function Design

The design of a next state function dominates the coding performance of FSVQs. Here we

propose the next-state function that deals with GM(1,1). Figure 2 shows the pixels that

contribute the construction of the state codebooks in the proposed GPMVQs. Similar to

SMVQs, two previously encoded blocks u and l are used in the next-state function. SMVQs

use the boundary pixels only, while the proposed scheme uses the all pixels in the western

and northern blocks. In the northern block u, four pixels in each column are the inputs of

the GM(1,1) (that is, n = 4 in Section 2) so that the predicted output, x(5), is the northern

boundary pixel in current block. On the other hand, in western block l, four pixels in each

row are the input of the GM(1,1) and the predicted output is the western boundary pixel

in the current block. Therefore, four predicted pixels at both northern and western sides

are obtained and correspond to row and column states in their state spaces. Although the

GM(1,1) can use more than four pixels for prediction, higher computation load is required

simultaneously. Moreover, the previous coded pixels could be different from the original

pixels. Thus using the distorted pixels as the inputs of the GM(1,1) could greatly decrease

the accuracy on the predicted pixel. Therefore, it is not necessary to use more pixels as

the inputs of the GM(1,1).

As shown in Figures 2(a) and 2(b), the pixels, {x1,j|j = 1, 2, 3, 4} and {xi,1|i = 1, 2, 3, 4}

are predicted by the pixels {u1,j, u2,j, u3,j, u4,j|j = 1, 2, 3, 4} in the northern block and

{li,1, li,2, li,3, li,4|i = 1, 2, 3, 4} in the western block using the GM(1,1), respectively. Note

that the pixel x1,1 can be the average value of two pixels predicted by the left row and the
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upper column. The error between the predicted pixels {x1,j|j = 1, 2, 3, 4} and {xi,1|i =

1, 2, 3, 4} and the corresponding pixels of every codeword in the super codebook is calcu-

lated. Then the calculated errors of all the codewords in the super codebook are sorted with

an incremental order. If the GM(1,1) predicts well, the codewords with smaller errors rep-

resent better candidates for encoding the current block. The state codebooks are selected

according to sizes we choose, and can be designed once the super codebook has been con-

structed (i.e., off-line design) to speed up the encoding and decoding processes. Consider

the contents of the blocks. SMVQs use the border pixel only to predict the boundary pixel

in the current block. The proposed GPMVQs employ four previous pixels and predicts the

next pixel following the property in previous pixels.

The image contents may contain edges, which are abrupt changes of pixels values in

images. The accuracy of GM(1,1) could greatly decrease when the input pixel values vary

a lot. To avoid incorrect prediction, the input pixel values are examined. If the difference

between any two consecutive values in a row or column is greater than a threshold value,

then the GM(1,1) will not be employed to predict the boundary pixel. Instead, the side

match algorithm is used.

4 Experimental Results

In computer simulation, six images shown in Fig. 3(a)–(f) are used to test the proposed

GPMVQs. The super codebooks of various sizes are generated by applying the LBG al-

gorithm [5] on four test images: F-16, Building, Harbour, and Peppers. Then the state

codebooks are generated by the use of GM(1,1) with α = 0.5. The proposed GPMVQs are

compared with the SMVQs. Both the proposed GPMVQs and SMVQs predict only the

boundary pixels. In predicting each boundary pixel, the former use four previously coded
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pixels and the later use only one pixel. Other classes of FSVQs, for example, the gradient-

match vector quantizers [15], predict not only boundary pixels, but also the inner pixels,

are not considered here. Therefore, here only the quantizers that predict the boundary

pixels are compared.

The peak signal-to-noise ratio (PSNR) of a decoded image is defined as

PSNR = 10 log10

5122 × 2552

∑ ∑512
i,j=1[f(i, j)− f ′(i, j)]2

dB. (14)

Tables 1 shows the rate-PSNR performance of SMVQs and GPMVQs for the six test im-

ages The super codebook size is 1024. The results for various state codebook sizes for

SMVQs and GPMVQs are provided. Note that the Lena and Lady images are outside the

training images, while the others are inside the training images. As shown in this table,

the performance of the proposed GPMVQs is better than those of SMVQs for the smooth

images such as the Lena and Lady images, especially for the cases of small state codebooks.

The 1.25 dB PSNR improvement is obtained for the Lady image when the state codebook

is of size 32. As shown in Figure 3(a), a lot of grayscale values on the face are gradually

changed. Therefore, superior prediction results of GMP for the Lady image are obtained.

On the other hand, the performance improvement for the complicated images such as the

Building and Harbour images is not obvious. This indicates that applying the GM(1,1)

on the next-state function design for FSVQs is more worthwhile for the less complicated

images, especially for the images whose most pixel values are gradually changed. Note

that for complicated image blocks, a threshold value 30 for current column/row is used to

determine whether the GM(1,1) will be used to predict the boundary pixel. The simula-

tion results for the Building and Harbour images show that the proposed GPMVQs have

comparable results.
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Although the proposed GPMVQs outperforms the SMVQs, the required computation

increases accordingly. Fortunately, the computation required for GM(1,1) prediction can

be performed when the state codebooks are off-line designed. Therefore, the encoding and

decoding time of the proposed GPMVQ is comparable with that of the SMVQs. In addition

to SMVQs, there are many other classes of FSVQs [3,15,17,18]. Some of them can greatly

improve the coding performance for SMVQs. A special application of FSVQs on improving

fractal image compression was proposed in Ref. [16]. To improve the proposed GPMVQs,

the following two directions can be considered. If the accuracy of the GM(1,1) model can

be improved, the coding performance of the proposed GPMVQs can be further enhanced.

On the other hand, adaptive selecting the complicated blocks as the initial blocks in FSVQs

[19] also has great potential to improve the proposed method.

5 Conclusion

A new class of FSVQs whose design of the next-state function is based on GM(1,1), named

the GPMVQs, is proposed in this paper. Four pixels in previously coded blocks are applied

to GM(1,1) to predict the border pixel in the current block. The predicted pixel follows

the property in previously coded pixels and thus it is a promise prediction. The simulation

results show that the proposed GPMVQs can outperform SMVQs for the less-complicated

images. For complicated images, their performances are still comparable.
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Table 1: The PSNR comparison between SMVQs and the proposed GPMVQs. The super
codebook is of size 1024 and the state codebooks are of sizes 16, 32, 64, 128, 256, and 512.

SMVQ

Image

GPMVQ

bpp

SMVQ

GPMVQ

bpp

SMVQ

GPMVQ

bpp

Lena Building Peppers F-16

26.61

26.89

0.256

28.49

28.84

0.317

29.94

30.14

0.379

23.16

23.22

24.91

24.81

26.26

26.28

23.16

23.22

28.84

29.05

30.14

30.35

26.14

26.28

27.76

28.13

29.44

29.62

S
tate co

d
eb

o
o
k

 size

16

32

64

SMVQ

GPMVQ

31.14

31.23

27.52

27.49

31.50

31.70

30.89

0.440bpp

128 30.81

31.90

31.90

28.40

28.35

32.57

32.57

31.90

31.80

0.502

256

bpp

GPMVQ

SMVQ

32.22

32.22

28.74

28.74

32.82

32.82

32.33

32.33

SMVQ

GPMVQ

0.563

512

bpp

Harbour

22.72

22.47

23.51

23.29

24.10

23.98

24.69

24.59

25.19

25.14

25.44

25.44

Lady

31.70

32.11

33.08

34.33

35.34

35.58

36.37

36.67

37.34

37.34

37.34

37.34
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De-quantizer:

Look-up Table

x i-2

x i-1

Quantizer:

Nearest Neighbor Search

x i-1

x i-2

x i-J

... x i-J

...

x i

. .. . ..

sisi

x i

q
i

Delay

De-quantizer

Delay
FunctionFunction

x i

Encoder Decoder

Next-State Next-State

State Codebooks (SCs) State Codebooks (SCs)

Figure 1: The block diagram of FSVQ.
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Figure 2: The pixels in previously coded blocks are used to estimate the boundary pixels
of current block x: (a) for the northern block u and (b) for the western block l.

(a) (b) (c)

(d) (e) (f)

Figure 3: The test images: (a) F-16, (b) Building, (c) Harbour, (d) Peppers, (e) Lena, and
(f) Lady.
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