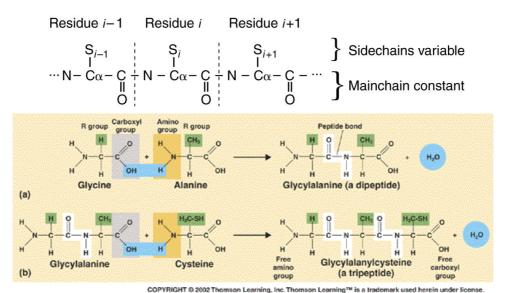
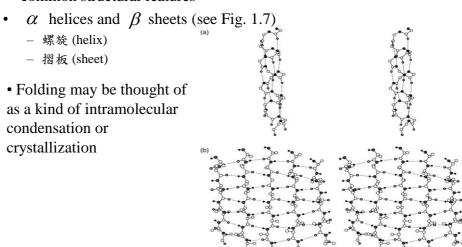
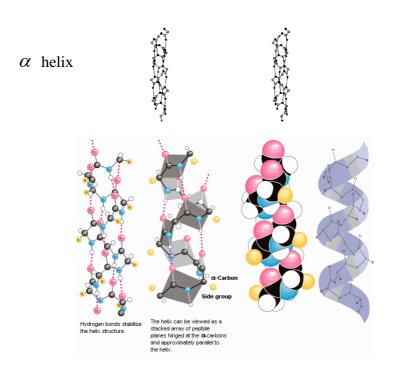
Introduction to Protein Structure

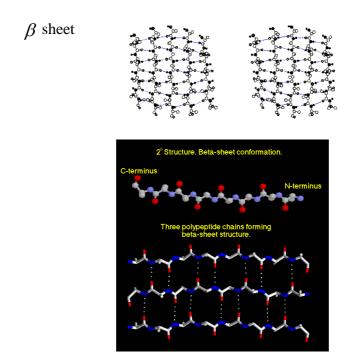

- 1-D world of nucleotide structure and amino acid sequences
- \rightarrow now enter to \rightarrow
- 3-D world of molecular structures

Proteins play a variety of roles in life process

- Structural proteins
- Enzymes: proteins that catalyze (催化) chemical reactions
- Transport and storage proteins
- Regulatory proteins
- Proteins that control gene transcription
- Proteins that involved in recognition, including cell adhesion (黏著) molecules,
- Antibodies and other protein of the immune system


- Proteins are *large molecules*.
- In many cases only a small part of the structure an *active site* is directly functional, the rest existing primarily to create and fix the spatial relationship among the active site residues.
- Proteins evolve by structural changes, produced by mutations in the amino acid sequence and genetic rearrangements, that bring together different combinations of structural subunits.


- ~ 85,000 protein structures are now known
- Most were determined by *X-ray crystallography* or *NMR* (nuclear magnetic resonance)
- Few were determined by electron microscopy and others
- Chemically, protein molecules are long polymers typically containing several thousand atoms, composed of a uniform repetitive *backbone* (or *mainchain*) with a particular *sidechain* attached to each residue (see Fig. 1.6)
- Amino acid sequence of a protein records the succession of sidechains.



eThr Ser Asp Tyr Ser Lys Tyr Leu Asp Ser Arg Arg Ala Gin Asp Phe Val Gin Trp Leu Met Asn Thr - COO 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

- The polypeptide chain folds into a curve in space
- The course of the chain defining a *folding pattern*
- A great variety of folding patterns: a number of common structural features



Hierarchical nature of protein architecture

- *Primary structure*: the amino acid sequence the set of primary chemical bonds
- *Secondary structure*: the assignment of helices and sheets the hydrogen-bonding pattern of the mainchain
- *Tertiary structure*: the assembly and interactions of the helices and sheets
- *Quaternary structure*: for proteins composed of more than one subunit, the assembly of the monomers (單體)

Additional levels to the hierarchy

- *Supersecondary structures*: include the alpha-helix hairpin, the beta-hairpin, and the beta-alpha-beta unit. (Fig. 1.8)
- *Domains*: many proteins contain compact units within the folding pattern of a single chain, that look as if they should have independent stability. (Fig. 1.9)
- *Modular proteins:* are multidomain proteins which often contain many copies of closely related domains.
 - Domain recur in many proteins in different structural contexts; that is, different modular proteins can 'mix and match' sets of domains.

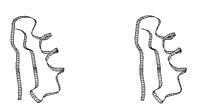
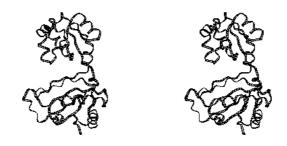
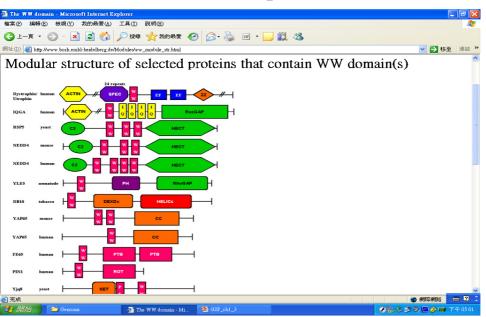
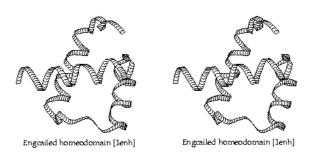
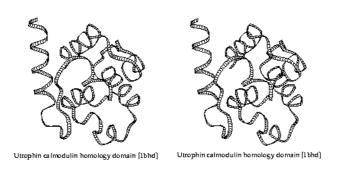




Fig. 1.9 RNA binding protein L1:

Multidomain proteins



Classification of protein structures


- The most general classification of families of protein structures is based on the *secondary and tertiary* structures
- Classification of protein structures occupies a key position in bioinformatics, not least as a bridge between sequence and function.

Class	Characteristic
α-helical	secondary structure exclusively or almost exclusively α -helical
β-sheet	secondary structure exclusively or almost exclusively β -sheet
$\alpha + \beta$	α -helices and β -sheets separated in different parts of the molecule; absence of β - α - β supersecondary structure
α/β	helices and sheets assembled from β - α - β units
α/β -linear	line through centres of strands of sheet roughly linear
α/β-barrels	line through centres of strands of sheet roughly circular
little or no seco	ondary structure

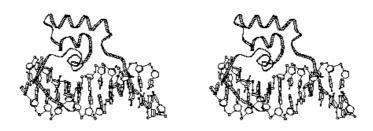
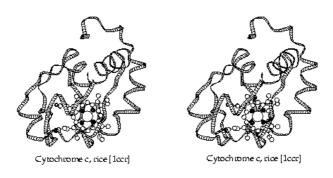
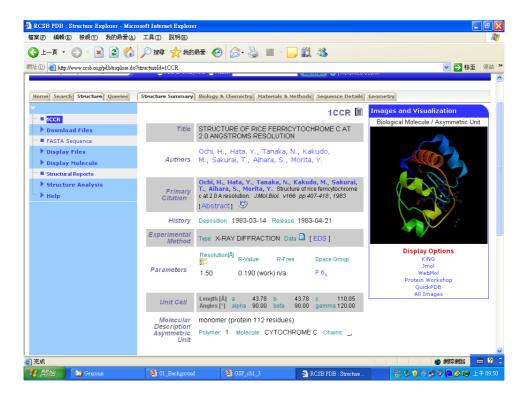
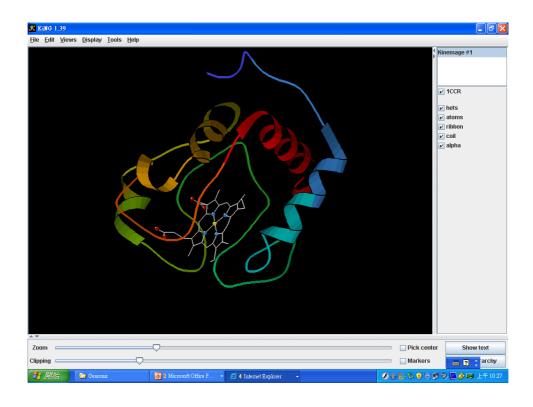
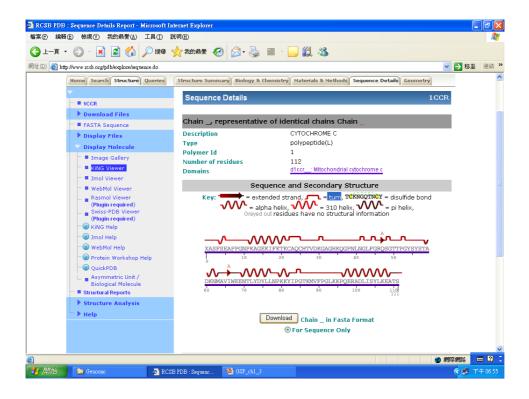

Fig 1-10a: engrailed homeodomain [1enh]:

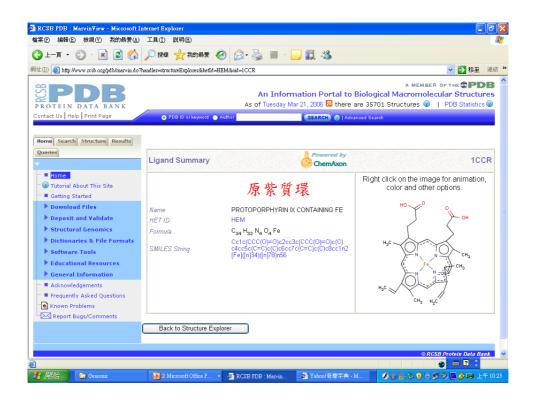
Fig 1-10b: second calponin homology domain from utrophin [1bhd]:

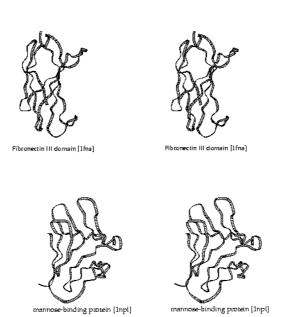

Fig 1-10c: HIN recombinase, DNA-binding domain [1hcr]:




DNA-binding domain of HIN recombinase [1hcr]


DNA-binding domain of HIN recombinase [1hcr]


(d) Rice embryo cytochrome c [1ccr]





TATA-box-binding protein [lcdw]

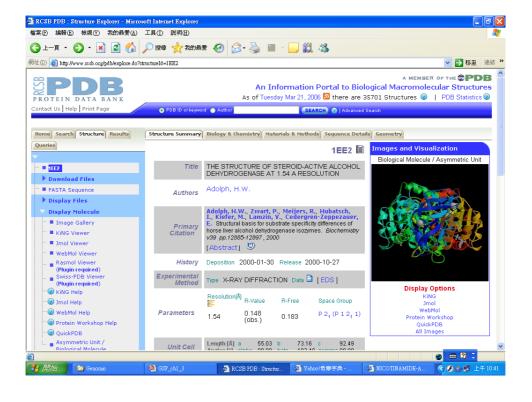
TATA-box-binding protein [1cdw

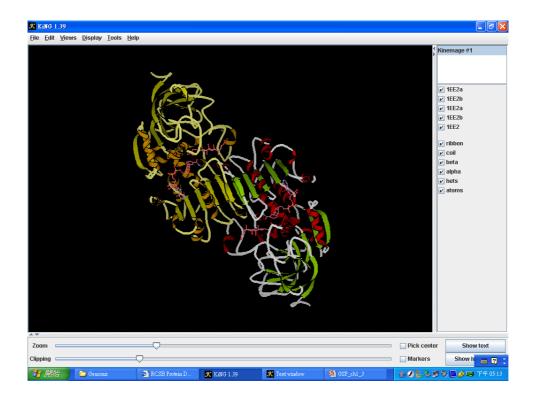
barnase[1bm]

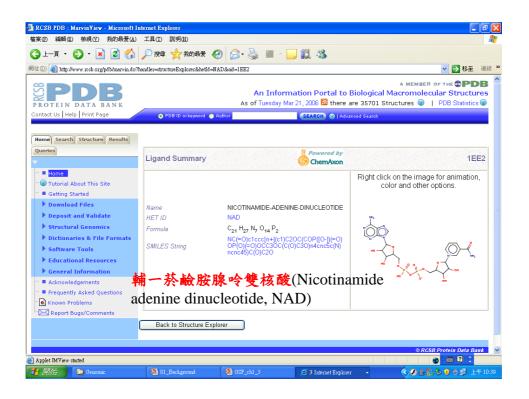
bamase [1bm]

OB-domain from Lys-tRNA synthetase [1bbw]

OB-domain from Lys-tRNA synthetase [1bbw]




Scytalone dehydratase [3std]



Scytalone dehydratase [3std]


Chemotaxis receptor methyltransferase [1af7]

Chemotaxis receptor methyltransferase [1af7]

Thiamine phosphate synthase [2tps]

Thiamine phosphate synthase [2tps]

pancreatic spas molytic polypeptide [2psp]

Web resources

- The Worldwide Protein Data Bank (wwPDB) http://www.wwpdb.org/
- The Research Collaboratory for Structural Bioinformatics (RCSB) (USA) http://www.rcsb.org/
- The Macromolecular Structure Database (MSD) (UK) http://www.ebi.ac.uk/pdbe/
- The protein databank Japan http://www.pdbj.org/
- BMRB (USA) http://www.bmrb.wisc.edu/
- Structural Classification of Proteins (SCOP) http://scop.mrc-lmb.cam.ac.uk/scop/
- The Molecular Modeling DataBase (MMDB)
 http://www.ncbi.nlm.nih.gov/Structure/MMDB/mmdb.shtml

Protein structure prediction and engineering

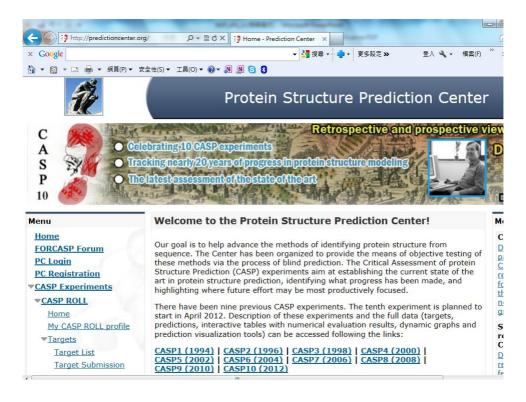
- Amino acid sequence of a protein dictates its 3D structure
- If amino acid sequences contain sufficient information to specify 3D structures of proteins, it should be possible to *devise an algorithm to predict protein structure from amino acid sequence*.
 - This has proved elusive (難以理解的).

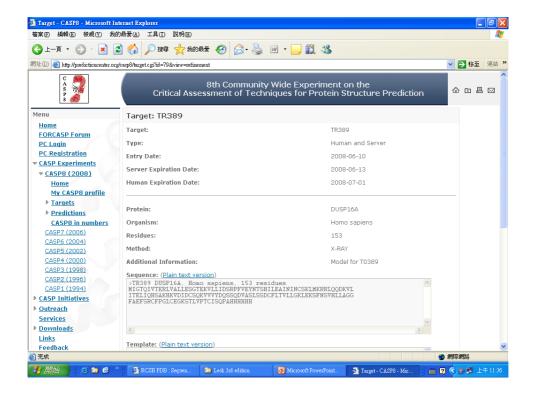
Less-ambitious goals:

- Secondary structure prediction which segments of the sequence form helices and which form strands of sheet?
- **Fold recognition** Given a library of known protein structures and their amino acids sequences, and the amino acid sequence of a protein of unknown structure, can we find the structure in the library that is most likely to have a folding pattern similar to that of the protein of unknown structure?
- **Homology modelling** If the sequences of two homolgous proteins have 50% or more identical residues in an optimal alignment, the structures are likely to have similar conformations over more than 90% of the model.

Aligned sequences and superposed structures of two related proteins: Alignment of Chicken lysozyme and Baboon alphalactalbumin

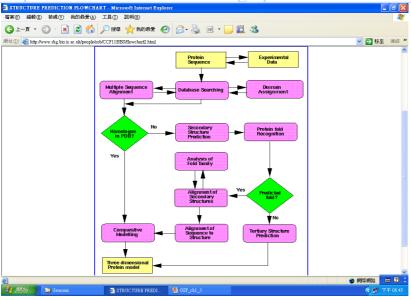
Chicken lysozyme Baboon alpha-lactalbumin Chicken lysozyme Baboon alpha-lactalbumin Chicken lysozyme Baboon alpha-lactalbumin KVFGRCELAAAMKRHGLDNYRGYSLGNWVCAAKFESNFNTQATNRNTDGS KQFTKCELSQNLY-DIDGYGRIALPELICTMFHTSGYDTQAIVEND-ES TDYGILQINSRWWCNDGRTPGSRNLCNIPCSALLSSDITASVNCAKKIVS TEYGLFQISNALWCKSSQSPQSRNICDITCDKFLDDDITDDIMCAKKILD DGN-GMNAWVAWRNRCKGTDVQA-WIRGCRL-I-KGIDYWIAHKALC-TEKL-EOWL-CE-K

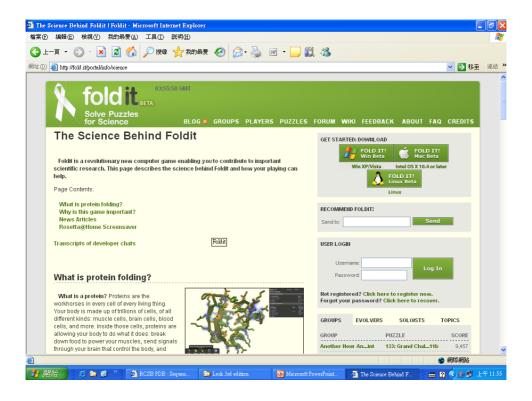

Superposition of Chicken lysozyme (black) and Baboon alpha-lactalbumin (red):



Critical Assessment of Structure Prediction (CASP)

- Judging of techniques for predicting protein structures requires blind test.
- Predictors submit models, which are held until the deadline for release of the experimental structure.
- Then the predictions and experiments are compared – to the delight of a few and the chagrin of most.




STRUCTURE PREDICTION FLOWCHART

http://www.russell.embl.de/gtsp/flowchart2.html

A computer game to learn protein folding

- Maintained by University of Washington, Department of Computer Science
- http://fold.it/
- Learn to play this game and get a score as high as you can
 - Download the "get started"
 - Register an account

Protein Engineering

- In the laboratory we can manipulate nucleic acids and protein at will.
 - We can probe them by exhaustive mutation to see the effects on function.
 - We can endow (賦予) old proteins with new functions,
 as in the development of catalytic (催化作用)
 antibodies
 - We can even create new ones. Engineered proteins
 must obey the laws of physical chemistry but not the
 constraints of evolution. With engineered proteins we
 can explore new territory.

Proteomics

- Combines the census (統計數), distribution, interactions, dynamics, and expression patterns of the proteins within living systems.
- A data-intensive subject, depending on highthroughput measurements
 - Include DNA microarrays, and mass spectrometry.

DNA Microarrays

- Or DNA chips
- Devices for checking a sample simultaneously for the presence of many sequences
- Can be used
 - To determine expression patterns of different proteins by detection of mRNAs
 - For genotyping(遺傳型), by detection of different variant gene sequences, including but not limited to single-nucleotide polymorphisms (SNPs)

Applications of DNA microarrays

- Identifying genetic individuality in tissues or organisms, or genotyping
- Investigating cellular states and processes
- Diagnosis of genetic disease
- Diagnosis of infectious disease
- Specialized diagnosis of disease
- Genetic warning signs
- Drug selection
- Target selection for drug design
- Pathogen (病原體) resistance
- Measuring temporal variations in protein expression

System biology

- Integration to put all cell part back together
- First aspect:
 - The study of patterns within a cell or an organism: pathways and control cascades, and patterns of protein expression.
 - Patterns have both static and dynamic aspects
 - Identification of pairs of proteins that bind to each other, and assembly of pairwise interactions into a network Static pattern.
 - Dynamic pattern: the flow of metabolites through a network of enzymes, or the flow of information down a control cascade, is a dynamic pattern.

- Second aspect comparison of occurrence, activities and interactions of genes and proteins across different species.
 - The systems we are trying to understand arose through processes of evolution. Different species illuminate one another.
- High-throughput methods of genomics and proteomics provide data about sequences, expression patterns and interactions.
 - Systems biology takes the data as pieces of a jigsaw puzzle that extends in both space and time. To understand the complex and delicate instrument that is the living cell, we must fit the pieces into their frame.

Clinical implications

- 1. Diagnosis of disease and disease risks
 - DNA sequencing can detect the absence of a particular gene, or a mutation.
- 2. Genetics of responses to therapy customized treatment
 - People differ in their ability to metabolize drugs, different patients with the same condition may require different dosages.

3. Identification of drug targets

A target is a protein the function of which can be selectively modified by interaction by a drug, to affect the symptoms or underlying causes of a disease.

4. Gene therapy

If a gene is missing or defective, we'd like to replace it or at least supply its product. If a gene is overactive, we'd like to turn it off.

Direct supply of proteins is possible for many diseases.

Practice

- Huntington disease
- Find out the cause of this disease using the Internet search.
- What is the phenomenon of "anticipation"?
- Answer:
- The same questions for other diseases: 地中海型貧血Mediterranean anemia, 紅斑性狼瘡Systemic Lupus Erythematosus