Signals and Systems Quiz #6 (Sec. 5.1-5.7)

Name:	ID No.:	2004/12/30
1. (10%) For an aperid	odic discrete-time signal $x[n]$, please give its Fouri	ier transform pair as follows:
x[n	$] = \underline{\qquad}, \qquad X(e^{jw}) = \underline{\qquad}$	
2. (10%) The Fourier	transform $X(e^{jw})$ of the discrete-time signal $x[$ of $x[n]$, because it provides us with the information	[n] will often be referred to as the on how $x[n]$ is composed of complex

- 3. (10%) Signals at frequencies near w = 0 and $w = 2\pi$ or any other even-multiple of π are all appropriately thought of as ______ signals. On the other hand, signals at frequencies near odd multiple of π are can be thought of as ______ signals.
- 4. (20%) Let $x[n] = a^{|n|}, |a| < 1$. Please determine its Fourier transform $X(e^{jw})$.

5. (10%) (a) The Fourier transform of the signal $x[n] = e^{jw_0n}$ is the impulse train

$$X(e^{jw}) = \sum_{l=-\infty}^{\infty} 2\pi\delta(\underline{\qquad}).$$

(10%) (b) Consider a periodic sequence x[n] with period N and with the Fourier series representation

$$x[n] = \sum_{k=\langle N \rangle} a_k e^{jk(2\pi/N)n}$$

The Fourier transform is

$$X(e^{jw}) = \sum_{k=-\infty}^{\infty}$$

6. (10%) For the discrete-time periodic impulse train

$$x[n] = \sum_{k=-\infty}^{\infty} \delta[n - kN],$$

the Fourier series coefficients is $a_k = \frac{1}{N}$. The Fourier transform consists of a train of impulses in the frequency domain, with the area of the impulses is ______.

7. (20%) Consider the signal $x[n] = \sin w_0 n = \frac{1}{2j}(e^{jw_0 n} - e^{-jw_0 n})$, with $w_0 = \frac{2\pi}{5}$. Please determine the Fourier transform of x[n] and depict $X(e^{jw})$ within one period.

- 8. (10%) The discrete-time Fourier transform of an aperiodic signal is always periodic in w with period
- 9. (10%) The convolution and multiplication properties:

$$y[n] = x[n] * h[n] \leftarrow^{\mathcal{F}} \rightarrow Y(e^{jw}) = _$$

$$y[n] = x_1[n]x_2[n] \leftarrow^{\mathcal{F}} \rightarrow Y(e^{jw}) = \frac{1}{2\pi}$$

10. (20%) Suppose that the frequency response of an ideal lowpass filter is denoted as $H_{\rm lp}(e^{jw})$ with cutoff frequency w_c . Please explain how an ideal highpass filter with cutoff frequency $\pi - w_c$ can be represented by an lowpass filter shifted by one-half period, i.e.,

$$H_{\rm hp}(e^{jw}) = H_{\rm lp}(e^{j(w-\pi)}).$$