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Abstract

Dyadic displacements of an image can be regarded as a special type of permutations

of pixel addresses. This property can be used to encrypt an image and obtain perfect

decryption. In this paper, a hybrid image cryptosystem based on the holographic

interference and dyadic permutations is proposed. First, the phase and amplitude

of the Fourier transform of an input image are recorded as the intensity information

through the holographic interference. Then the extracted phase is processed through

dyadic permutations by applying the exclusive-OR (XOR) operations on a user key and

the addresses of all phase information. In decryption, an asymmetric process is used

to recover the original image. Simulation results are provided to verify the proposed

cryptosystem and show that the proposed scheme is robust to additional noise.

Subject terms: optical security, dyadic permutations, image cryptosystem, XOR operation,
holographic interference, phase encryption.
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1 Introduction

Optical security systems based on the optical signal processing and computing techniques

recently have received a great deal of attention [1], [2]. The properties of the high-speed

calculation and two-dimensional (2-D) parallelism make the optical security system more

suitable to be employed in the practical security systems. Moreover, the optical security

systems can provide higher security than digital systems because the optical components

such as the holograms and phase-only masks are hard to be broken or duplicated.

Some optical security techniques based on holographic interference, such as the computer-

generated hologram (CGH) interference [3] and the phase-shift method [4], have been elab-

orated. Because the CGH has no internal regularity and is hard to be duplicated, and the

implementation of the holographic interference is not difficult, the security and encryption

performance of these methods are very promising. However, these methods still have some

drawbacks. In conventional random phase-encoding methods, for example, the double ran-

dom phase encoding techniques [5]–[7], an image is encrypted with both the spatial and the

frequency domains by the employment of randomly generated phase-only masks. Thus a

frequency-domain filter is needed during the decryption process. In addition, high alignment

accuracy is also required.

Recently, Castaneda et. al. [8] proposed an encryption technique, which employs the

dyadic permutation on the image pixeles. The dyadic permutation is done by performing

the exclusive OR (XOR) operations for the key and the addresses of the image pixels. With

a proper selection of the key, the pixels in an image can be re-arranged such that the image

can be encrypted as a very different one. However, there exist some disadvantages in this

technique. First, the encrypted images can be similar to the original one when the keys used

for dyadic operation are not carefully selected. Second, this encryption method is easy to
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be broken by the use of the brute force method when the size of plain image is known in

advance. Finally, the optical implementation of the dyadic permutation should be pointed

out in order to obtain higher operation speed. Therefore, we here propose the encryption

method that can conquer the problems above.

XOR operation has some useful properties such as the closure and the reversibility, it has

been used for optical image encryption in Ref. [9]. In this paper, an image encryption method

based on optical holographic interference and the dyadic permutations in the frequency

domain is proposed. First, an image is processed by means of Fourier transform and the

holographic interference (with a plane reference wave). In the proposed cryptosystem, the

amplitude of the Fourier transform of the input image and the intensity of the reference wave

should be determined in advance. Then the phase part of the Fourier transform of the input

image can be extracted by digital ways. The XOR operation is used to exchange the address

of each pixel in the phase part and proceed to the encryption of the information system.

This method provides advantages in design, fabrication, robustness for additive noise, and

lower alignment requirement. Therefore it has a promising future in practical applications.

The remainder of this paper is given as follows: Section 2 gives the background of this

work, which includes the hologram interference and the dyadic operation for Fourier phase.

The motivation and the proposed method are described in Section 3. The computer simula-

tion of the proposed method, the discussion on the effects of additive noise, and the possible

optical implementation are given in Section 4. Finally, Section 5 concludes this paper.

2 Background

2.1 Hologram Interference

The experiments performed by Abbe and Porter [10] provide a powerful demonstration of

the detailed mechanism by which coherent images are formed, and indeed the most basic
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principles of Fourier analysis itself. Owing to the experiments above, we can know that the

Fourier spectrum of an input image appears in the back focal plane of the imaging lens. The

discrete Fourier Transform pair can be expressed as follows:

FO(u, v) =
1

N

N∑

x=1

N∑

y=1

fO(x, y)e−i2π(ux+vy)/N , (1)

fO(x, y) =
1

N

N∑

x=1

N∑

y=1

FO(u, v)ei2π(ux+vy)/N , (2)

where fO(x, y) is an input image with N × N pixels and FO(u, v) is the discrete Fourier

transform of fO(x, y). Each pixel of the input image fO(x, y) only has the amplitude infor-

mation (real grayscale values), but its Fourier transform FO(u, v) has not only the amplitude

but also the phase information. Hence we can rewrite Eq. (1) as follows:

FO(u, v) = O(u, v)e−iφ(u,v), (3)

where O(u, v) and φ(u, v) denote the amplitude and the phase parts, respectively.

If we place a charge coupled detector (CCD) sensor in the back focal plane of the imaging

lens, then the CCD sensor responds only to light intensity |O(u, v)|2. We can use a plane

reference wave RO = Re−iθ(u,v) to assist the CCD sensor in detecting the phase of the Fourier

transform FO(u, v), as shown in Fig. 1. The intensity I detected by the CCD sensor is given

as follows:

I ∝ |FO + RO|2 = |O|2 + |R|2 + |O| |R| ei(φ−θ) + |O| |R| ei(θ−φ). (4)

Hence, we can rewrite Eq. (4) as follows:

cI(u, v) = |O|2 + |R|2 + 2 |O| |R| cos(φ− θ), (5)

where c is a constant, which is inversely proportional to the sensitivity of the CCD sensor.

In Eq. (5), the first two terms depend only on the intensities of the individual waves, the

third term depends on their relative phase and amplitude information. For the encryption
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system, the magnitude |O| of the Fourier transform of the input image, the intensity |R|,

and the angle θ of the plane reference wave RO can be determined in advance. Therefore,

the phase part of the Fourier transform of the input image can be determined as follows:

φ(u, v) = cos−1(
cI − |O|2 − |R|2

2 |O| |R| ) + θ. (6)

2.2 Dyadic Displacement of Fourier Phase

A digitized image, for example, that captured by a CCD sensor or analyzed by a digital

image processing device, can be represented as a 2-D digital function f(n,m). It can be

defined as an array of N ×M pixels. Both the indices n and m denote the addresses of the

function values, and n = 0, 1, . . . , N − 1 and m = 0, 1, . . . , M − 1.

Performing the XOR operation with binary digits j ∈ [0, N − 1] and k ∈ [0,M − 1],

respectively, on the addresses of a 2-D function, i.e. f(n,m) → f(n⊕ j, m⊕ k), is called the

dyadic displacement of that function [11]. It exhibits the following properties:

1. Closure: The new addresses will have the same number of bits as the original ones.

2. One-to-one mapping: If a set of data 0, 1, 2, 3 is processed by the XOR operation,

for example the binary-digit representation of the key is 01, then the result is shown

as follows:

00⊕ 01 = 01; 01⊕ 01 = 00; 10⊕ 01 = 11; 11⊕ 01 = 10.

Both the domain and the region are within the same range [0, 3]. Therefore, if an

image is processed by the XOR operation, then the processed image will have the

same amount of pixels as the original one.

3. Reversibility: Each original address can be recovered by the XOR operation of the

corresponding encrypted address using the correct key, because

(x⊕ key)⊕ key = x.
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3 Proposed Method

3.1 Motivation

Owing to the properties shown in the previous section, dyadic displacements can be used

as a simple but useful encryption procedure. It can recover the original image without

information loss or degrading [12] because nothing is added to perform the encryption. While

the dyadic displacement has these advantages above, however, the encryption system [8] that

only employed the dyadic displacement on the image pixels has two fatal drawbacks. First,

the encrypted results may not be random enough to conceal the original information when

the transition number of 1 and 0 within binary digits of the user key is few. The transition

number (the change number in bits) of a key of 8 bits, for example, (64)10 = (01000000)2, is

2 because there are two bit changes in its binary representation. That is, 0→1 and 1→0 from

the first bit to the third bit. There are no transitions in the following bits because they are

all 0s. The possible transition numbers of a key of n bits are 0, 1, 2, . . ., n-1. The transition

number dominates the permutation result of the Lady image. The scrambling effect is better

for a key with a larger transition number. This phenomenon has been demonstrated in Figs.

2(a)–2(d), in which the transition numbers of the four keys (0)10 = (00000000)2, (255)10 =

(11111111)2, (64)10 = (01000000)2, and (85)10 = (01010101)2 are 0, 0 , 2, and 7, respectively.

Obviously, the Lady image of size 256×256 (shown in Figs. 2(a)) is very difficult to be

recognized from Fig. 2(d) (key = 85), because the transition number of the user key is the

largest. However, the images shown in Figs. 2(b) and 2(c) are very easy to be recognized,

in which the transition numbers are only zero and two, respectively. Furthermore, each user

key is set by individual user and cannot be controlled by the encryption system.

Second, the encrypted image can be easily broken. For example, let the Lady image be

encrypted based on the dyadic displacement with the user key 85. If someone inputs the
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keys that are similar to the user key in the bit-plane format, then the output may be some

recognizable images such as that shown in Figs. 3(a)–3(c). The figures shown in Fig. 3(a)-

3(d) are the results for the input keys 86, 84, 170, and 64, which their Hamming distances

to the correct user key 85 are 2, 1, 1, and 3, respectively. If the size of an image is known

in advance, then the bit length l of the key can be determined. Thus the correct key can be

easily found by the use of the brute force method, in which all the possible keys with the

same bit length are tested such that the original image can be discovered. Here we point out

some observations as follows:

1. The encrypted image can be very different from the original one only when the user key

is with a large transition number.

2. The less Hamming distance between the user key and the input key is, the less difference

between the decrypted and the original images can be obtained.

3. If the input key and the user key are complementary (the sum of the input key and the

user key is equal to 2l− 1), then the decrypted image is the 180◦ rotated version of the

original one.

Figure 4(a) and 4(b) shows the logged MSE results versus the transition

number and the Hamming distance, respectively, for all the possible user keys

in this method. As shown in 4(a), the transition numbers of the user keys are

within the range [0,7] and the smaller MSE values of the encrypted images are

obtained for smaller user keys. However, as shown in Fig. 2(b), which is just an

overturned version of the original image, some of the encrypted images may be

easily recognized although they are of large MSE values. Therefore, the number

of useful user keys actually is less than 255. On the other hand, consider Fig.
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4(b). Even a suitable user key is chosen, the MSE values of the input keys that

are close to the user key are smaller than that of other input keys. Two examples

shown in 3(a) and 3(b) verify this result.

According to the observations shown above, it is unwise to encrypt an image by directly

applying the dyadic permutation on the image pixels. Therefore, we here propose a hybrid

cryptosystem that can perform the dyadic permutation in the frequency domain. Because the

rearranged phase information has to be re-transformed into the spatial domain, the recovered

image can still be very different from the original one. Therefore, the selection of the user

key is not so critical in the proposed cryptosystem. In addition to the phase information,

higher security can be achieved when the amplitude information and the parameters used

in the holographic interference, such as the angle incident to the hologram plane, can be

considered simultaneously.

3.2 Encryption

The block diagram and the optical architecture of the encryption procedure of the proposed

cryptosystem are shown in Fig. 5(a) and Fig. 6(a), respectively. First, the input image is

optically Fourier transformed. This procedure can be easily implemented by optics, which

is shown in the upper part of Fig. 6(a). The Fourier spectrum is detected by a CCD sensor

and then transmitted to a computer for further digital processing. The computer determines

the magnitude part of the Fourier transform as the first key, i.e., key1 = |Fo(u, v)|. On the

other hand, a reference wave is incident on the detection plane with an oblique angle θ.

The interference pattern of the Fourier transform of the input image and the reference wave

is obtained as shown in Eq. (4). From Eq. (6), the computer in Fig. 6(a) can determine

the phase information φ(u, v) of the Fourier transform of the input image because that the

intensity of the Fourier transform of the input image, |O|2, the intensity of the plane reference
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wave, |R|2, can be determined in the encryption system in advance.

The extracted phase φ(u, v) is within the range [−π, π]. For the purpose of convenient

storage and transmission, the extracted phase is mapped to the grayscale value within the

range [0, 255]. There are many mapping ways between the phase and the grayscale values.

For example, the grayscale value φm(u, v) can be determined as

φm(u, v) = b255× φ(u, v) + π

2π
c, (7)

where b·c denotes the floor operation for finding the largest integer. Then the computer

in Fig. 6(a) performs XOR operations for the addresses of the mapped phase

φm(u, v) and the user key, keyuser, in eight bit planes. That is,

keyuser = ∪8
i=1key(i)

user, (8)

and

φ(i)
e (u, v) = φ(i)

m (u⊕ key(i)
user, v ⊕ key(i)

user), for i = 1, 2, . . . , 8, (9)

where φ(i)
e (u, v) and φ(i)

m (u, v) denote the ith bit of φe(u, v) and φm(u, v), respectively.

By combining the φ(i)
e (u, v) in the eight bit planes, the result of dyadic permuta-

tions of the mapped phase, φe(u, v), can be obtained. In the proposed cryptosystem,

this encrypted phase φe(u, v) serves as the second key key2. To obtain higher security, two

user keys, one for u address and the other for v address, can be used. Moreover, the oblique

angle θ can also be varied during the determination of the phase φm(u, v). In such a case,

the computer will determine another information that can be used to design the second key.

Here the oblique angle θ is jointly considered with the phase φ(u, v). That is,

cos[φ(u, v)− θ] =
cI − |O|2 − |R|2

2|O||R| . (10)

Similarly, this value within the range [−1, 1] is mapped to the grayscale value within the

range [0, 255]. Thus a higher security of the system is obtained, because anyone that even
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possesses both keys, key1 and key2, cannot reconstruct the original information without the

information regarding to the angle θ.

3.3 Decryption

The block diagram and the optical setup for the decryption system are shown in Fig. 5(b)

and Fig. 6(b), respectively. Each user must possess key1, the Fourier spectrum of the original

image, key2, which corresponds to the encrypted phase information, the correct user key,

and the angle θ, simultaneously. Moreover, both keys key1 and key2 must be placed at the

correct positions, then the correct user key can be used to decrypt the original image.

The key key2 in the grayscale form cannot be directly used to recover the original image.

It should be converted into the phase form in the computer and then the dyadic operations

are applied to reconstruct the original phase information. In Fig. 6(b), the key key2 is placed

in front of the CCD sensor such that the intensity detected by the CCD sensor is given as

follows:

φd ∝ φe, (11)

which corresponds to the grayscale values shown in the key key2 (the encrypted phase infor-

mation of the Fourier transform of the original image). Hence, we can rewrite Eq. (10) as

follows:

φd = cdφe, (12)

where cd is a constant coefficient that is in proportion to the sensitivity of the CCD sensor.

For the CCD sensor shown in Fig. 6(b), the coefficient cd does not need to be known in

advance. The angle of the pixel with the maximal value captured by the CCD sensor in

Fig. 6(b) is equal to π for sure. With a proper scaling factor, the angles of other pixels can

be computed from Eq. (10). Then the computer shown in Fig. 6(b) proceeds the dyadic

permutations with the user key to yield the phase φp(u, v). If both the input key and the
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angle θ are correct, then the phase φp(u, v) should be identical to the phase φ(u, v) of the

Fourier transform of the original image. With the optical Fourier transform, the original

image will appear and can be detected in the back focal plane of the Fourier-transform lens

shown in Fig. 6(b).

3.4 Level of Security

Suppose that an unauthorized user owns the amplitude information (key1) and

the scrambled phase information (key2). Then the number of the possible com-

bination becomes 2568 = 264 and the user key is 64-bit long now. To increase

the security degree, we can use two different user keys for u and v addresses at

each bit plane. Then the number of combination then becomes (2562)8=2128 ≈

3.4028 × 1038, which should be secure enough, and the user key is 128-bit long.

As to the amplitude information, another user key(s) may be applied using the

same operation as that for the phase information. On the other hand, the inci-

dent angle θ of the reference wave also can contribute the security degree of the

proposed cryptosystem.

To further increase the level of security, different ways of the phase-to-amplitude

mapping shown in Eq. (7) can also provide more protection. Furthermore, the

proposed method can cooperated with the double random phase encoding tech-

niques [6]. Two random phase masks can be used to further encrypt the ampli-

tude and phase information. In addition to the user key, breaking two random

phase masks will be much more difficult for the unauthorized users.
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4 Simulation and Discussion

In computer simulation, the Lady and Pattern images of size 256×256 are used to test the

proposed cryptosystem. To simplify the comparison with the method shown in Section 3.1

and easily demonstrate the effectiveness of the proposed method, here the results of using

only the 8-bit-long user key on the pixel addresses are performed. Figure 7(a) shows the

Fourier spectrum of the Lady image. The mapped phase φm(u, v) of the Fourier transform

is shown in Fig. 7(b). Figures 7(c) and 7(d) are the encrypted results that the mapped

phase φm(u, v) is processed with the user keys 64 and 85, respectively. That is, φe(u, v) =

φm(u⊕ 64, v ⊕ 64) and φe(u, v) = φm(u⊕ 85, v ⊕ 85). Though the transition number of the

user key 64 is only 2, the original image cannot be recognized from Fig. 7(c). Hence, the

first problem about the limited selection of the user key in the encryption system that only

employed the dyadic displacements on image pixels can be solved in the proposed method.

After the decryption, both the mean-square error (MSE) and the peak-signal-to-noise ratios

(PSNRs) of the recovered image f ′ are used to represent the quality. The MSE and PSNR

of a recovered image are defined as

MSE(f, f ′) =
1

N2

N∑

x=1

N∑

y=1

[f(x, y)− f ′(x, y)]2, (13)

and

PSNR = 10 log10

2552

MSE
dB, (14)

respectively. For the Lady image, the recovered image is with the MSE 0.77 and the PSNR

47 dB. That is, the image fidelity in the proposed cryptosystem is well preserved.

Because the Pattern image has some easily recognized shapes, it is used to test the pro-

posed cryptosystem. Figure 8(a) shows the mapped phase φm(u, v) of the Fourier spectrum

of the Pattern image. The encrypted phase φe(u, v), with the user key 85, of the mapped
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phase φm(u, v) is shown in Fig. 8(b). Figures 8(c) and 8(d) are the decrypted results of using

the input keys 86 and 84 when the user key is 85. From both figures and the corresponding

MSE and PSNR values, the decrypted images obtained from the incorrect input keys are

very different from the original image, even the input keys are very close to the user key.

Hence, the proposed system can overcome the second problem.

Figures 9(a) and 9(b) demonstrate the effects of the transition number of the

user keys and the Hamming distance between the user key and the input key,

respectively. As shown in Fig. 9(a), for all possible user keys with different

transition numbers, the MSE values of the decrypted image are equally large

even when the input key is very close to the user key. Thus the selection of the

user key is not limited by the transition number. As for the Hamming distance,

Fig. 9(b) shows that only the user key can correctly decrypt the original image.

Otherwise, large MSE values are obtained even the input keys are very close

to the user key. The examples shown in Fig. 8(c) and 8(d) verify this result.

Compared with the results shown in Fig. 4(a) and 4(b), the selection of the user

key of the proposed method is independent on the transition number and robust

to the input keys with low Hamming distances. Figure 10(a) shows the decrypted

image when the input key is 170 and the user key is 85. Both keys are complementary

because their sum is equal to 255. The original image cannot be recognized from Fig. 10(a).

Moreover, Fig. 10(a) is not similar to the overturned original image at all. Hence, the

proposed system can overcome this kind of problems in the encryption system that only

employs the dyadic displacements on image pixels. For the proposed cryptosystem, the

original image can be recovered only when the input key is equal to the user key. Figure

10(b) shows the correct recovered image whose quality is quite high. The MSE and PSNR
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of this image are 0.18 and 54.5 dB, respectively.

The effects of the amplitude information in the proposed cryptosystem are

also considered here. Suppose that the correct phase information and the user

key are obtained, but the amplitude information is lost. If the amplitude infor-

mation is guessed as a constant such as 255 for each pixel value, the decrypted

images for the Lady and Pattern images are shown in Fig. 11(a) and 11(b),

respectively. Only some blur contour information can be observed from both

figures and most of the information is lost. Therefore, the user key can also be

applied to the amplitude information such that the higher security level can be

achieved.

For the proposed cryptosystem, both keys, key1 and key2, are portable data. Both keys

may be transmitted through the Internet or carried by someone to the decryption system.

Hence, key1 and key2 may be interfered with some noise. Therefore, it is necessary to

discuss the immunity against the noise for the proposed cryptosystem. Figures 12(a) and

12(d) show the decrypted Pattern images under that both keys key1 and key2 are corrupted

by 15% additive ‘salt and pepper’ noise. Obviously, all the decrypted images still can be

recognized and very close to the original one.

5 Conclusion

In this paper, we proposed a hybrid cryptosystem to encrypt an plain image by performing

the dyadic permutation on the phase information in the frequency domain. The proposed

method not only overcomes the drawbacks of the encryption system that only employed the

dyadic displacements on image pixels, but also provides the advantage of the robustness to

the additive noise. High degree of security can be furthermore achieved while cooperating

with the double random phase encryption technique. Patrick [13] has presented a feasible
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optical implementation for the dyadic displacements. In the future, we will develop some

parallel hardware to perform the computation, finding the maxima [14] and the dyadic

displacements, to make the proposed system become a whole parallel structure. On the

other hand, to obtain efficient transmission over the Internet or storage for both keys, the

proposed system is still conducive to the compression of the information contained in the

keys. This compression issue can be one of the important future research topics.
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Figure 1: The optical setup of holographic interference.
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Figure 2: The results of that only the dyadic displacements on the pixels of the Lady image
are used: (a) key = 0, (b) key = 255, (c) key = 64, and (d) key = 85.
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Figure 3: The decrypted results for the different input keys: (a) 86, (b) 84, (c) 170, and (d)
64. The correct user key is 85.
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Figure 4: For the dyadic permutations that are directly performed on the pixels, (a) MSE
versus transition numbers for all possible user keys; (b) MSE versus Hamming distances
between all possible user keys and the correct user key (keyuser = 85).
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cryptosystem.
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Figure 6: The optical setups of the proposed hybrid cryptosystem: (a) encryption and (b)
decryption systems.
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(a) (b)

(c) (d)

Figure 7: (a) The power spectrum of the original image. (b) The mapped phase represented
as grayscale values. The encrypted phase information with user keys (c) keyuser = 64 and
(d) keyuser = 85 for the Lady image.
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(a) (b)

(c) (d)

Figure 8: (a) The extracted phase, (b) the encrypted phase with user key=85. The decrypted
images are with (c) keyuser = 86, MSE = 4592.8, PSNR = 11.51 dB and (d) keyuser = 84,
MSE = 3936.2, PSNR = 12.18 dB, for the Pattern image.
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Figure 9: For the proposed method, (a) MSEs under different transition numbers for all
possible input keys; (b) MSEs versus Hamming distances between all possible user keys and
the correct user key (keyuser = 85).
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(a) (b)

Figure 10: The decrypted images for (a) the user key keyuser = 170, MSE = 3733.2, PSNR
= 12.41 dB, and (b) the correct user key keyuser = 85, MSE = 0.1814, PSNR = 54.45 dB.

(a) (b)

Figure 11: The decrypted images with the correct user key, the phase information, but the
incorrect amplitude information (the grayscale values in key1 all are 255): (a) Lady image,
(b) Pattern image.
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(a) (b)

Figure 12: The decrypted images with 15% additive‘salt and peppers’ noise for both keys:
(a) key1, MSE = 148.65, PSNR = 26.38 dB, (b) key2, MSE = 814.86, PSNR = 19.02 dB.
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