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Chapter 1

Signals and Systems — basic concepts

1.0 Introduction
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Summary

This course is one of several fundamental required
courses for Electrical Engineering. It covers analytic
(mathematic) background for modeling and analyzing
real-world signals and systems.

Examples of signals include those involving electricity,
audio, images, video, radar signals, and seismic
signals.

Systems store, manipulate, or transmit signals by
physical processes. Examples include electric circuits
and systems, communication systems, control systems,
and signal processors.

What is a signal?
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1.1 Signals

- Signals may describe a wide variety of physical
phenomena. It can represent mathematically as
functions of one or more independent variables:

f(.x,y,2..), x(t)

» For example:
— Time: x(t)
— Frequency: X(f)
— Temperature °F, °C
— Pressure
— And many others...

Iput | gystem |, Output
Signal Y Signal

Examples of Systems:
« Figure 1.1 A simple RC circuit (Page 2)
 Figure 1.2 An automobile

Examples of Signals:

 Figure 1.3 Example of recorded speech.
 Figure 1.4 A Monochromatic Picture

« Figure 1.5 Typical vertical wind profile

* Figure 1.6 Weekly Dow-Jones Stock Market
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We will be considering two basic types of signals:
. . . X(1)
+ Continuous-time signals x(t)
0

We enclose the independent variable in parentheses (+)
+ Discrete-time signals x[n]

%[
. | I xi21
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I -8 llllOlZ3ﬂbﬁff'5l

Figure 1.7  Graphical represeniations of (a) continugus-time and (b discrele-
time signals.

We use brackets [] to enclose the independent variable.
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1.1.2 Signal Energy and Power

* The energy (E) and power (P) of continuous-time
signal x(t) over the time interval t, < t < t,;:

tZ
=f |x(t)|%dt, P= f|x(t)|2dt
t, tb—4

» The energy (E) and power (P) of discrete-time signal
X[n] over the time interval n,<n< n,:

n 1 n
E = Z 2 'P = Z 2
[l P = e g D ]
n=n, n=n,

11

e In many systems, we are interested in examining power
and energy in signals over an infinite time interval, 1.e.,
for —oo <t < 400 0r —0 < n < 4o, then write as

follow...
+ Continuous-time signal x(t)

+T . 1 +T )
E = Th_)rglo j_T |x(t)|" dt, P = Tll_)nc}oﬁj_T |x(t)|” dt

« Discrete-time signal x[n]
+N

E =i z - z
Jim > x[ll P = lim e b Il
n=-N n=-N

12
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x[n]

illl,

X[n—ng]

Al
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W18 HEFMBARRMEMER. WD no >0, & xfn — no] & x[n] AR (B x[n] 0%
EHBHBRE <n —no]) .

1.2 Transformations of Independent Variable

A central concept in signal and system analysis is that
of the transformation of a signal.
]

Al
Al

to

Figure 1.9 Continuous-time signals related

by a time shift. In this figure % < 0, so that
x(t — £) is an advanced version of x(f) (i.e., Figure 1.10 {a) A discrete-time signal x[n]; (b) its reflec-
each peint in x(f) occurs at an earlier time in tion x[—n| about A = 0.

x(t — H).
14
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x()
X(t)
0 v/ t = ! !
(a) x(2t)
x(—t)
= 0_"3 t
x(t/2)
\
\/ 0 t
(b)
. N X . . t
Figure 1.11 (a) A continuous-time signal x(t); (b) its _t: ’2

reflection x(—¢) about t = 0. Figure 1.12 Continuous-time signals

related by time scaling.
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Figure 1.13 (a) The continuous-time signal x{f) used in Examples 1.1-1.3
to itlustrate transformations of the independent variable; (b) the time-shifted
signal x(f + 1}; (c) the signal x(—¢ + 1) obtained by a time shift and a time
reversal: (d) the time-scaled signal x(%?); and (e} the signal x(§r+ 1) obtained
by time-shifting and scaling.

16



1.2.2 Periodic Signals

 Continuous-time - x(t)=x(t+T), for all values of t
It’s unchanged by a time shift of T.
For example, x(t)=x(t+mT), m is an integer.

EAVAVANAWAS

+ Discrete-time = x[n]=x[n+N], for all values of n
It’s unchanged by a time shift of N.

LI L
I 1T 1 1

Fig. 1.15

17

1.2.3 Even and Odd signals

Even signals: # & # 3 55
x(—t) = x(t), for continuous-time signals
x[—n] = x[n], for discrete-time

signals

x{t)

0
Odd signals: 4 3 #c 13 5. @
x(—t) = —x(t), for continuous-time signals "

x[—n] = —x[n], for discrete-time
signals

2022/2/21
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n

1
e} - [?jﬂiﬁ Evix[n]}= E{x[n] +x[-n]}
I

g OdAnD- %{x[n]—x[—n]}

[

11
2’ Q
Od{x[n]} ={ on=0 ‘
ln>0 —3-2-10
2
1
—3-2-1 ZI T T
1 1 1 012 3 n Figure 1.18 Example of the even-
¢, odd decomposition of a discrete-time
2

signal.

1.3.1 Exponential and sinusoidal signals
« Continuous-time signal

x(t) = Ce*
(a) a>0;
. ~ (b) a<o;
. () a=0, x()=C i.e. a
constant

Fig‘ 1.19 | 20

10



Periodic Complex Exponential and Sinusoidal Signals

Consider x(t) = e/Wot
for a periodic signal with period T,
then ejwot — ejwo(t+T)

Or since e/Wo(t+T) = giw,t gjw,T

We must have e/W T =1
2T

The fundamental period T, =

|,

21

Euler’s Relation e!? =cos@+ jsing

e JWOT

cos WoT =1and sinwgT =0
WoT =2nz, nisan integer

=CoSWyT + JsinwT =1

For the nonzero and smallest integer, n=+1 or -1

22
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A signal closely related to the periodic complex
exponential is the sinusoidal signal

x(t) = Acos(w,t + 0)

X(t) = A cos (wgt + ¢)

r-A

; T,= 27 ;
A4 ]
10
(Acos &)
O \

Figure 1.20 Continuous-time sinu-
soidal signal.

23

Figure 1.21 Relationship between
the fundamental frequency and period
for continuous-time sinusoidal signals;
here, wn > wy > ay, Which implies
that i < Th < Ts.

24

12
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Examplel.5

25

General Complex Exponential Signals

Consider a complex exponential Ce®, where C is expressed
in polar form and a in rectangular form. That is,

C=|Cle’’ and a=r+jw,

Then

Ce® = |C|ej98(r+jw0)t — |C|ertej(wot+9)
= |Cle™ cos(wyt + 0) + j|Cle" sin(wyt + 0)

26

13
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Figure 1.23 (a) Growing sinusoidal
signal x(t) = Ce" cos (wpt + 0),

r > 0; (b) decaying sinusoid x(t) =

Ce cos (wot + 8), r < 0.

27

1.3.2 Exponential and sinusoidal
signal

* Discrete-time signal
e x[n] = Ca™, C and a are real

-+ Figure 1.24 The real exponential

signal x[n] = Ca™ 28
@e>1B0<a<t;
(© -1<a<0{da<-1

2022/2/21
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General Complex Exponentioal
Signals: C and a are complex

= |C|ef9

o a = |a| e/®o

« Then, Ca™ = |C||a|"e’ (@on+6)

= |C||a|™ cos(wgn + 6) + j|C||a|*sin(wyn + )
» For |a| =1, the real and imaginary parts of a
complex exponential sequence are sinusoidal.

30
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C and a are complex, p. 25, Eq. (1-50)
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Figure 1.26 (a) Growing discrete-time sinusoidal signals; (b) decaying

discrete-time sinusoid. 31

1.3.3 Periodicity Properties of Discrete-Time
Complex Exponentials

ej(w0+2n)n — ejZT[TlejWOn — ejwon_

e = (ej”)" = (—1)"

32
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Figure 1.27 Discrete-time sinusoidal sequences for several different frequencies.

TABLE 1.1 Comparison of the signals /o’ and e/=o”.

33

e/l elwott

Distinct signals for distinct values of w,  Identical signals for values of w,

separated by multiples of 27

Periodic for any choice of w,

Periodic only if wg = 27rm/N for some integers N > 0 and m.

Fundamental frequency w, Fundamental frequency” wo/m

Fundamental period Fundamental period”
wy = (: undefined wo = 0: undefined

wy #= 0: X a)nv-()mrf\
wy \wgy /

“Assumes that m and N do not have any factors in common,

34

o

2022/2/21

17



2022/2/21

Example 1.6

Determine the fundamental period of the discrete-time
signal x[n]=e/ (2®/3)n4.¢JGm/4n,

The first exponential on the right-hand side has a
fundamental period of 3. (3x 21t /3=2m)

For the second term, the fundamental period is 8.
(8x3m /4=61, the smallest multiple of 2)

The smallest increment of n that simultaneously satisfies
the two terms is 24.

35

1.4 The unit impulse and unit step function

1.4.1 The Discrete-Time Unit impulse and unit step sequences

3[n)

 Unit pulse:

[) SE—

Figure 1.28 Discrete-time unit im-
N pulse (sample).

Figure 1.29  Discrete-time unit step
N sequence.

36
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x[n]8[n] = x[0]6[n], §[n] is non zero only for n = 0.

Similarly, x[n]&[n — ng] = x[ny]d[n — ng]

37

Interval of summation

Figure 1.30 Running sum of
() eq. (1.66): (a) n < 0; (b) n> 0.

38

19
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Interval of summation

3in—kK] Tt
n 0 k
@
Interval of summation
C ek
W’—;“Q—&L‘k
0 n k
Figure 1.31 Relationship given in
®) eq. (1.67): @) n < 0; (b) n> 0.

39

1.4.2 The Continuous-time unit impulse and unit
step sequences

0, t<o0
1, t>0

u(t) = {

t [e'e)
u(t) = j 6(t)dr = j 6(t —o)do.
— 00 0

uity

40

20
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Interval of integration

Interval of integration

o
- m———— o
-

(b)

Figure 1.37 Running integral given in eq. (1.71): 7
(@) t<0; (b) t>0.

Interval of integration
dt—-0) e ____
t 0 o
(@
Interval of integration
""" I'é({—"a')"'"""
0 t o
(b)
Figure 1.38 Relationship given in eq. (1.75); 42

(@) t<0;(b) t>0.

21
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1.5 Continuous-time and discrete-time system
representation

x(t) Continuous-time ‘

system > v()

(@)

x[n] Discrete-time

system > vin]

Figure 1.41 (a) Continuous-time
(b) system; (b) discrete-time system.

44
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1.5.1 Simple Examples of Systems

Example 8 — the RC circuit depicted in Fig. 1.1
Example 9 — Fig. 1.2

Example 10 — A simple model of the balance in
a bank account from month to month

Example 11 — a simple digital simulation of the
differentiation equation

45

1.5.2 Interconnections of systems

|n.-n_nl—-| System 1 }—‘l Systam 2 I——u Output
{2)

Figure 1.42 Interconnection of two systems:
(a)series(cascade); (b) parallel; (¢)series-parallel.

46
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Input ——>®‘> System 1 — Qutput
System 2 Figure 1.43 Feedback interconnec-
tion.
47
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1.6 Basic system properties

« 1.6.1 Systems with and without memory

— Memoryless system: its output for each value of
the independent variable at a given time is
dependent on the input at only that same time.

— For example: y[n]=(2x[n]- x?[n])?
— An example of a discrete-time system with
memory is an accumulator of summer: y[n] = »  a[k].

k=—o0

— Second example: Delay: y[n]=x[n-1]

49

The concept of memory in a system corresponds to
the presence of a mechanism in the system that
retains or stores information about input values at
times other than the current time.

+ Continuous-time system with memory:
— Capacitor: input is current and output is the voltage (C is the

capacitance) 1 t
y(t) = EI x(z)dz

» Accumulator: add the current input value to the preceding
value of the running sum.

yirl= XK1+ xin = yin- 11+ o]

50

25
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1.6.2 Invertibility and Inverse system

» A system is said to be invertible if distinct inputs
lead to distinct outputs. For example,

y()=2x(t).
For which the inverse system is
w(t)="/2y(t)
» Examples of noninvertible systems are

y[n]=0, produces zero output sequence for any input
sequence.

y(t)=x2(t), can’t determine the sign of the input from
knowledge of the output

51

yinl | Inverse

Xn}=——~1 System system

W] = X[

X(t) =1 y(t) = 2x(t) > wib)

V() f—— wit] = x(t)

A= yi= 3 < 2 Wi = yinl ~ yin - 1) e wi =

Figure 1.45 Concept of an inverse system for: (a) a general invertibie sys-
tem; (b) the invertible system described by eq. (1.97); (c) the invertible system
defined in eq. (1.92).

26
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 1.6.3 Causality

— A system is causal if the output at any time
depends only on values of the input at the
present time and in the past.

— All memoryless systems are causal since the
output responds only to the current value of the
input.

Causal example: y[n]=x[-n], n>0
Non-causal example: y[-4]=x[4]

y(t)=x(t)cos(t+1) -> causal or noncausal?

53

1.6.4 Stability

BIBO property: Bounded input leads to
bounded output

y(t)=tx(t) = stable? No

If x(t)=1 (bounded input), then y(t)=t, which is
unbounded.

y(t)=exp[x(t)] = stable? Yes

If [x(t)|< B, -B<x(t)<B (bounded input), then
exp[-B]<exp[x(t)]=y(t)<exp[B], output is
bounded.

54

27
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1.6.5 Time Invariance

Conceptually, a system is time invariant if the behavior and
characteristics of the system are fixed over time. For example,
the RC circuit of figure shown below is time invariant if the
resistance and capacitance values R and C are constant over

time. # A _I_
ve I ]’ c _l_ H
Example of time invariance: o v ans casctor verg by

x[n]—y[n] after a time shifting of input signal x[n-1]
X[n-1]—y[n-1] identical time shit in the output signal y[n-1]

55

Examples 1.14 & 1.15

56

28
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Example 1.16
Consider the system y(t)=x(2t), time variant
-2 t —1|--! | t
0 4 t o’_! t

yit-2)
_'[[L

1 3 t
(e
147 (@O 1.16 REBAIMA 21 (): (b)xi (1) AUERIEMEL v, (0): CBURNA () =
21(t — 2); (@ x2() ERBHOML 12(); ©BLAMRy (¢~ 2). TK: £ ) # 57
ya(e - 2) REINPA R EE R PSR,

1.6.6 Linearity

A linear system is a system that possesses the important
property of superposition: if an input consists of the
weighted sum of several signals, then the output is the
superposition — that is, the weighted sum — of the
responses of the system to each of those signals.

« For example, the following system is linear if:
input —  response output
x© - y(®)

X (O+%(t) — yi()y,(b)
axy () +bxy(t) = ay, () +by,(t)

where a and b are any complex constants.
58
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Examples 1.17,1.18, 1.19

« y()=tx(t) = linear

« y(t)=x?(t) = not linear

* y()=Re{x(t)} = not linear

59

Example 1.20

Linear

x(t) » system

Yo )

y®)

Figure 1.48 Structure of an incrementally linear system. Here, yp[n] is the

zero-input response of the system.

y[n]=2x[n]+3

Responds linearly to changes in the input

That is, the difference between the responses
to any two inputs is a linear function of the
difference between two inputs.

Incrementally linear systems 60

30
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1.7 Summary

Through the chapter, we have learned about:

Continuous-time signals and discrete-time signals
Energy and power

Odd and even signals

Exponential and sinusoidal signal

Periodical and non periodical signal

Unit impulse and unit step function

Time variance and time invariance

Linear and nonlinear systems

The primary focus of this book will be on the class of

linear, time-invariant system (LTI system.)

61

31



