

Chapter 1

Signals and Systems – *basic concepts*

1

1.0 Introduction

- 本課程在所有工程科技領域都有基本而重要的應用，且歷久彌新
- Communications 通訊
- Audio and Speech processing 語音訊號處理
- Image and Video Processing 影像與視訊處理
- Acoustics 聲波學
- Circuit Design 電路設計
- Seismology 地震學
- Biomedical Engineering 生醫工程
- Bioinformatics 生物資訊
- Energy Generation and Distribution System 能量產生與配送系統
- Chemical Process Control 化學程序控制
- Aeronautics 航空學
- Astronautics 太空航行學
- ...

2

Summary

- This course is one of several **fundamental** required courses for Electrical Engineering. It covers analytic (**mathematic**) background for modeling and analyzing real-world signals and systems.
- Examples of signals include those involving electricity, **audio, images, video, radar signals, and seismic signals**.
- Systems **store, manipulate, or transmit** signals by **physical processes**. Examples include electric circuits and systems, communication systems, control systems, and signal processors.

3

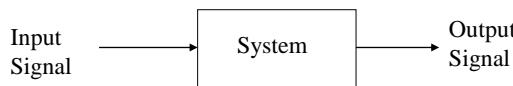
What is a signal?

4

1.1 Signals

- Signals may describe a wide variety of physical phenomena. It can represent mathematically as **functions** of one or more independent variables: $f(..x,y,z..)$, $x(t)$
- For example:
 - Time: $x(t)$
 - Frequency: $X(f)$
 - Temperature $^{\circ}\text{F}$, $^{\circ}\text{C}$
 - Pressure
 - And many others...

5



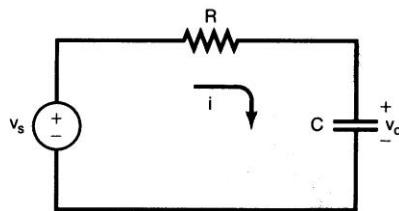
Examples of Systems:

- Figure 1.1 A simple RC circuit (Page 2)
- Figure 1.2 An automobile

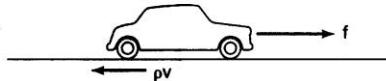
Examples of Signals:

- Figure 1.3 Example of recorded speech.
- Figure 1.4 A Monochromatic Picture
- Figure 1.5 Typical vertical wind profile
- Figure 1.6 Weekly Dow-Jones Stock Market

6

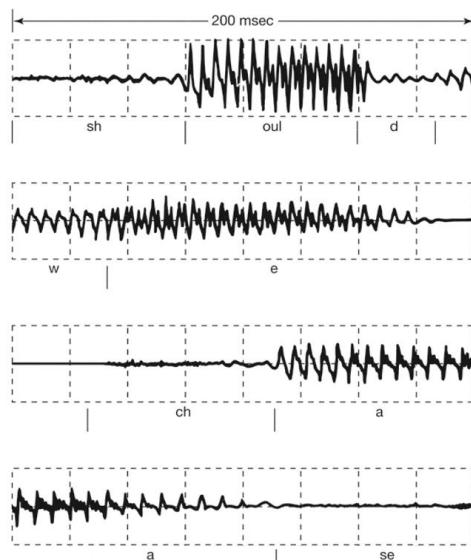


■ 1.1 具有電源 v_s 和電容電壓 v_c 的簡單 RC 電路



■ 1.2 汽車引擎產生的應用力 f 和與汽車速度 v 成正比的摩擦力 $p v$ 的響應

7



■ 1.3 某個語音信號的波形。圖的第一行對應到“should”這個字，第二行的字是“we”，最後兩行的字是“chase”。（在每個字中，我們也大約標示出每個連續聲音的開始和結束。）

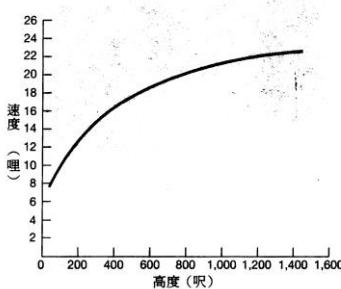


圖 1.5 典型年平均沿垂直方向風速分佈圖（摘取自 Crawford and Hudson, National Severe Storms Laboratory Report, ESSA ERLTM-NSSL 48, August 1970）

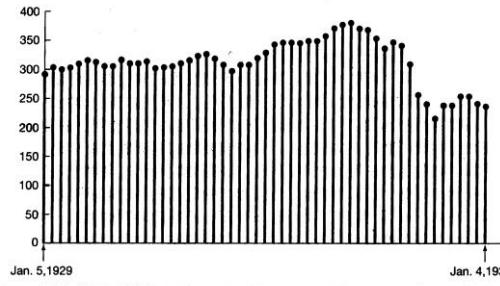
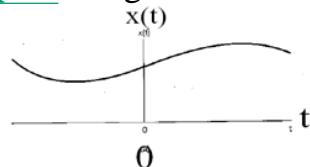


圖 1.6 離散時間信號的例子：從 1929 年 1 月 5 日至 1930 年 1 月 4 日，每週股票市場道瓊指數的變化

9

We will be considering two basic types of signals:

- **Continuous-time** signals $x(t)$



We enclose the independent variable in parentheses (\cdot)

- **Discrete-time** signals $x[n]$

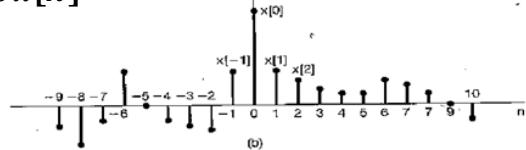


Figure 1.7 Graphical representations of (a) continuous-time and (b) discrete-time signals.

We use brackets $[\cdot]$ to enclose the independent variable.

10

1.1.2 Signal Energy and Power

- The **energy** (E) and **power** (P) of **continuous-time** signal $x(t)$ over the time interval $t_1 \leq t \leq t_2$:

$$E = \int_{t_1}^{t_2} |x(t)|^2 dt, \quad P = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} |x(t)|^2 dt$$

- The **energy** (E) and **power** (P) of **discrete-time** signal $x[n]$ over the time interval $n_1 \leq n \leq n_2$:

$$E = \sum_{n=n_1}^{n_2} |x[n]|^2, \quad P = \frac{1}{(n_2 - n_1) + 1} \sum_{n=n_1}^{n_2} |x[n]|^2$$

11

- In many systems, we are interested in examining power and energy in signals **over an infinite time interval**, i.e., for $-\infty \leq t \leq +\infty$ or $-\infty \leq n \leq +\infty$, then write as follow...

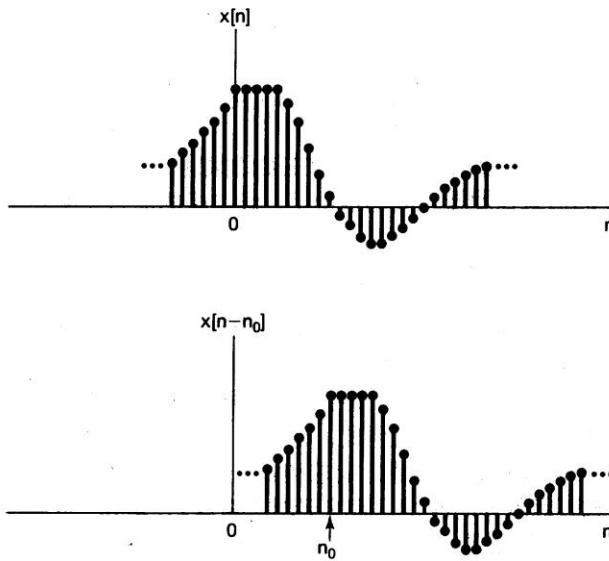
- Continuous-time signal $x(t)$

$$E = \lim_{T \rightarrow \infty} \int_{-T}^{+T} |x(t)|^2 dt, \quad P = \lim_{T \rightarrow \infty} \frac{1}{2T} \int_{-T}^{+T} |x(t)|^2 dt$$

- Discrete-time signal $x[n]$

$$E = \lim_{N \rightarrow \infty} \sum_{n=-N}^{+N} |x[n]|^2, \quad P = \lim_{N \rightarrow \infty} \frac{1}{2N + 1} \sum_{n=-N}^{+N} |x[n]|^2$$

12



■ 1.8 有時間移位的離散時間信號。圖中 $n_0 > 0$ ，故 $x[n - n_0]$ 是 $x[n]$ 的延遲（即 $x[n]$ 的每點稍後出現在 $x[n - n_0]$ ）。

1.2 Transformations of Independent Variable

A central concept in signal and system analysis is that of the *transformation* of a signal.

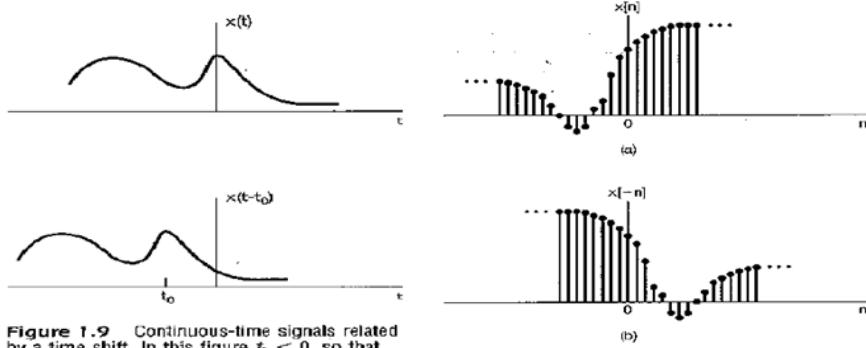


Figure 1.9 Continuous-time signals related by a time shift. In this figure $t_0 < 0$, so that $x(t - t_0)$ is an advanced version of $x(t)$ (i.e., each point in $x(t)$ occurs at an earlier time in $x(t - t_0)$).

Figure 1.10 (a) A discrete-time signal $x[n]$; (b) its reflection $x[-n]$ about $n = 0$.

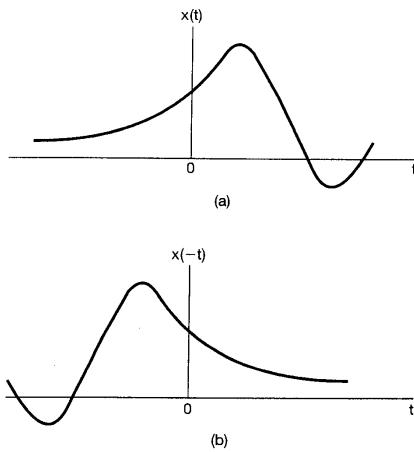


Figure 1.11 (a) A continuous-time signal $x(t)$; (b) its reflection $x(-t)$ about $t = 0$.

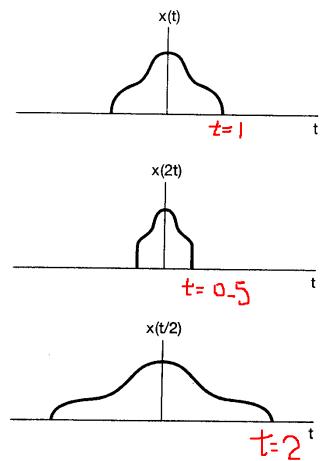


Figure 1.12 Continuous-time signals related by time scaling.

15

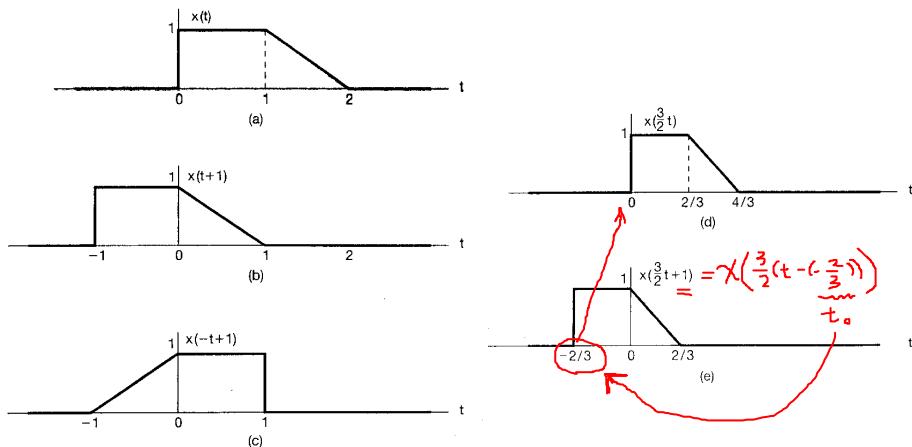
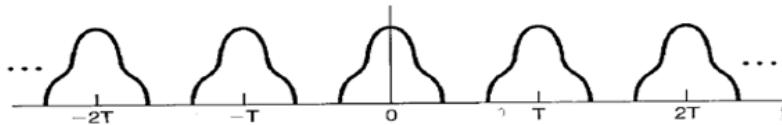


Figure 1.13 (a) The continuous-time signal $x(t)$ used in Examples 1.1-1.3 to illustrate transformations of the independent variable; (b) the time-shifted signal $x(t+1)$; (c) the signal $x(-t+1)$ obtained by a time shift and a time reversal; (d) the time-scaled signal $x(\frac{3}{2}t)$; and (e) the signal $x(\frac{3}{2}t+1)$ obtained by time-shifting and scaling.

16

1.2.2 Periodic Signals

- Continuous-time $\rightarrow x(t)=x(t+T)$, for all values of t
It's unchanged by a **time shift** of T .
For example, $x(t)=x(t+mT)$, m is an integer.



- Discrete-time $\rightarrow x[n]=x[n+N]$, for all values of n
It's unchanged by a time shift of N .

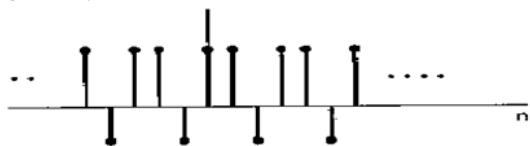


Fig. 1.15

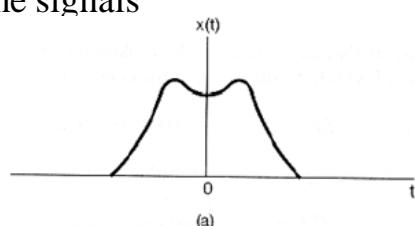
17

1.2.3 Even and Odd signals

Even signals: 偶函數信號

$x(-t) = x(t)$, for continuous-time signals

$x[-n] = x[n]$, for discrete-time signals



Odd signals: 奇函數信號

$x(-t) = -x(t)$, for continuous-time signals

$x[-n] = -x[n]$, for discrete-time signals

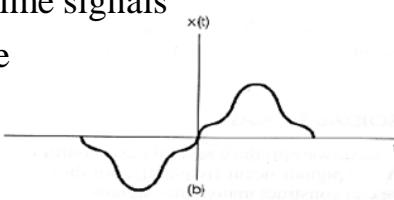


Fig. 1.17

18

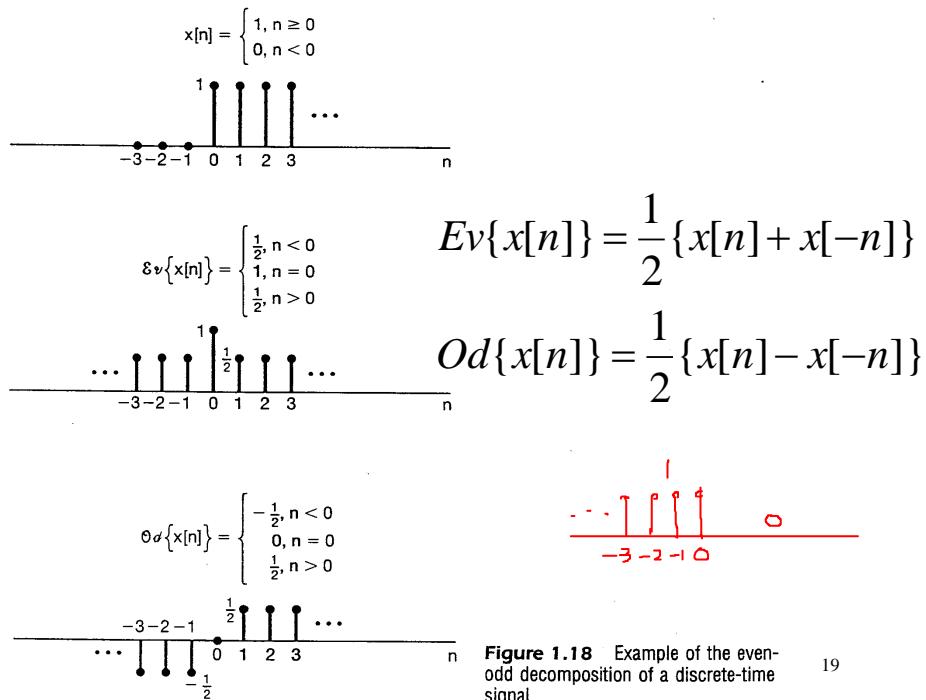
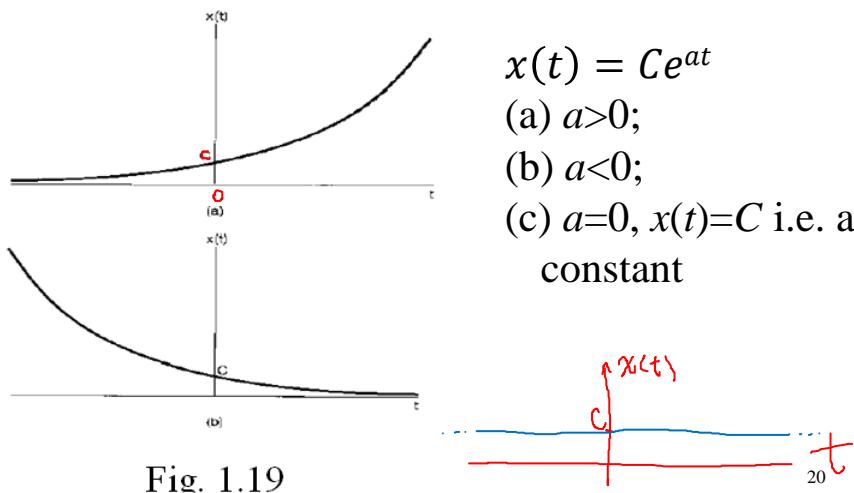


Figure 1.18 Example of the even-odd decomposition of a discrete-time signal.

1.3.1 Exponential and sinusoidal signals

- Continuous-time signal



Periodic Complex Exponential and Sinusoidal Signals

Consider $x(t) = e^{j\omega_0 t}$

for a periodic signal with period T ,

then $e^{j\omega_0 t} = e^{j\omega_0(t+T)}$

Or since $e^{j\omega_0(t+T)} = e^{j\omega_0 t} e^{j\omega_0 T}$

We must have $e^{j\omega_0 T} = 1$

The fundamental period $T_0 = \frac{2\pi}{|\omega_0|}$

21

Euler's Relation $e^{j\theta} = \cos \theta + j \sin \theta$

$$e^{j\omega_0 T} = \cos \omega_0 T + j \sin \omega_0 T = 1$$

$$\cos \omega_0 T = 1 \text{ and } \sin \omega_0 T = 0$$

$$\omega_0 T = 2n\pi, n \text{ is an integer}$$

For the nonzero and smallest integer, $n=+1$ or -1

$$|\omega_0| T_0 = 2\pi, \Rightarrow T_0 = \frac{2\pi}{|\omega_0|}$$

22

A signal closely related to the periodic complex exponential is the sinusoidal signal

$$x(t) = A \cos(\omega_0 t + \phi)$$

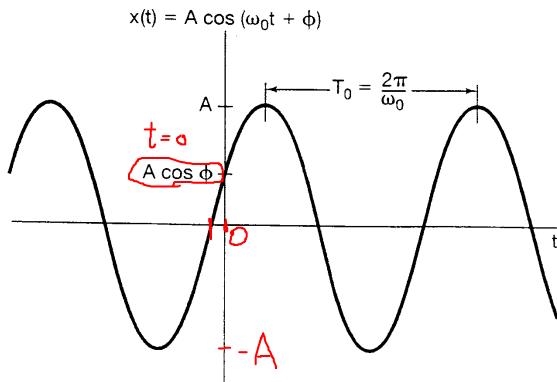


Figure 1.20 Continuous-time sinusoidal signal.

23

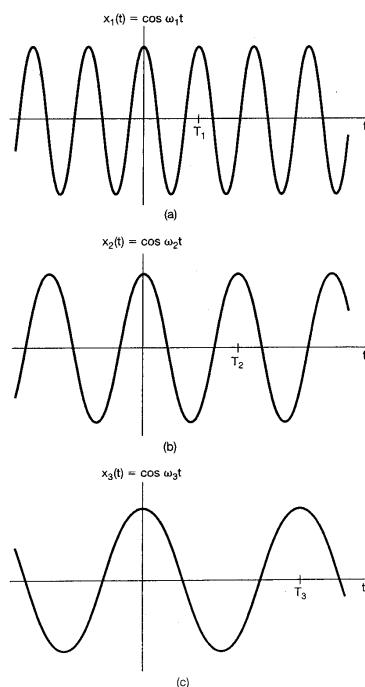


Figure 1.21 Relationship between the fundamental frequency and period for continuous-time sinusoidal signals; here, $\omega_1 > \omega_2 > \omega_3$, which implies that $T_1 < T_2 < T_3$.

24

Example 1.5

25

General Complex Exponential Signals

Consider a complex exponential Ce^{at} , where C is expressed in polar form and a in rectangular form. That is,

$$C = |C|e^{j\theta} \quad \text{and} \quad a = r + jw_0$$

Then

$$\begin{aligned} Ce^{at} &= |C|e^{j\theta}e^{(r+jw_0)t} = |C|e^{rt}e^{j(w_0t+\theta)} \\ &= |C|e^{rt}\cos(w_0t + \theta) + j|C|e^{rt}\sin(w_0t + \theta) \end{aligned}$$

26

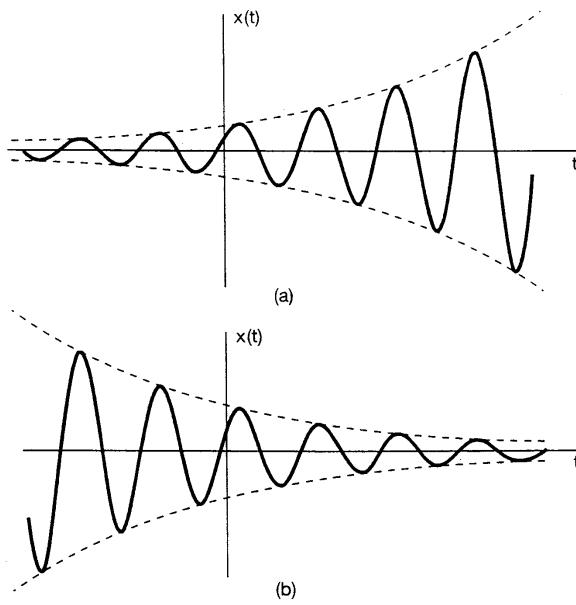
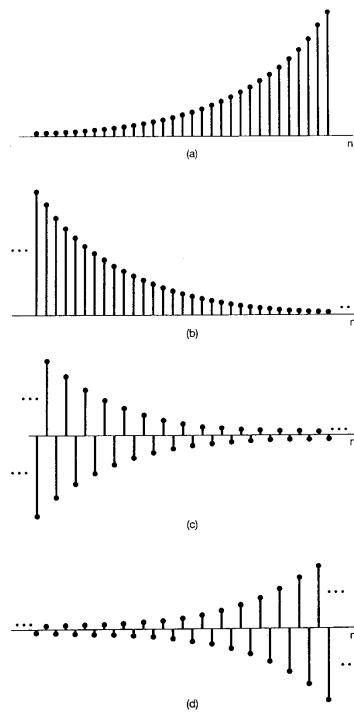


Figure 1.23 (a) Growing sinusoidal signal $x(t) = Ce^{rt} \cos(\omega_0 t + \theta)$, $r > 0$; (b) decaying sinusoid $x(t) = Ce^{rt} \cos(\omega_0 t + \theta)$, $r < 0$.

27

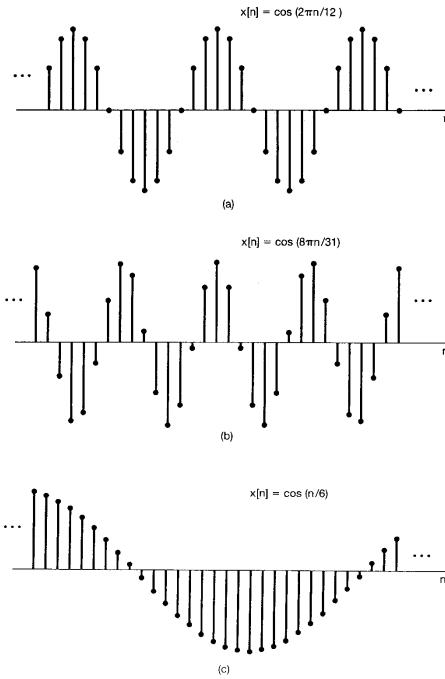


1.3.2 Exponential and sinusoidal signal

- Discrete-time signal
- $x[n] = C\alpha^n$, **C and α are real**

28

Figure 1.24 The real exponential signal $x[n] = Ca^{n-1}$:
 (a) $\alpha > 1$; (b) $0 < \alpha < 1$;
 (c) $-1 < \alpha < 0$; (d) $\alpha < -1$.



29

Figure 1.25 Discrete-time sinusoidal signals.

General Complex Exponential Signals: C and α are complex

- $C = |C|e^{j\theta}$
- $\alpha = |\alpha| e^{j\omega_0}$
- Then, $C\alpha^n = |C||\alpha|^n e^{j(\omega_0 n + \theta)}$
 $= |C||\alpha|^n \cos(\omega_0 n + \theta) + j|C||\alpha|^n \sin(\omega_0 n + \theta)$
- For $|\alpha| = 1$, the real and imaginary parts of a complex exponential sequence are sinusoidal.

30

C and α are complex, p. 25, Eq. (1-50)

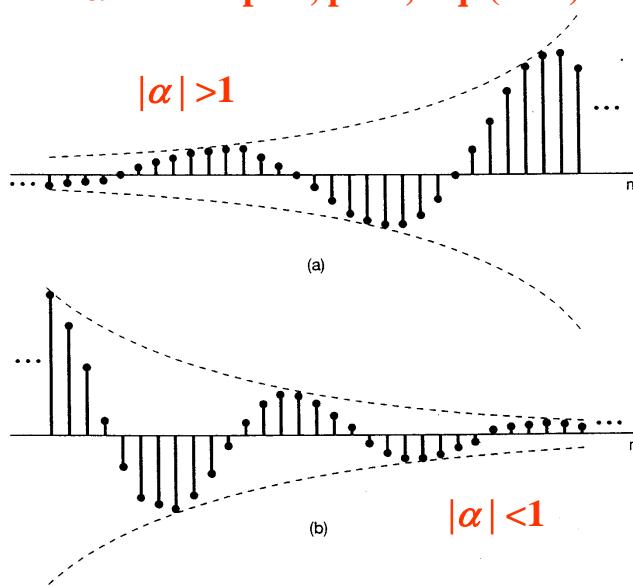


Figure 1.26 (a) Growing discrete-time sinusoidal signals; (b) decaying discrete-time sinusoid.

31

1.3.3 Periodicity Properties of Discrete-Time Complex Exponentials

$$e^{j(w_0+2\pi)n} = e^{j2\pi n} e^{jw_0 n} = e^{jw_0 n}.$$

$$e^{j\pi n} = (e^{j\pi})^n = (-1)^n$$

32

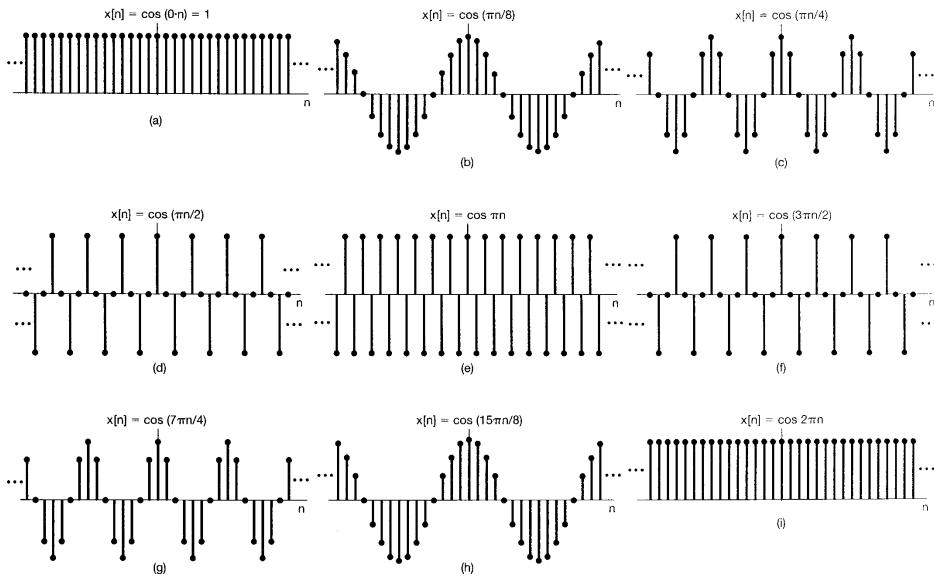


Figure 1.27 Discrete-time sinusoidal sequences for several different frequencies.

33

TABLE 1.1 Comparison of the signals $e^{i\omega_0 t}$ and $e^{i\omega_0 n}$.

$e^{i\omega_0 t}$	$e^{i\omega_0 n}$
Distinct signals for distinct values of ω_0	Identical signals for values of ω_0 separated by multiples of 2π
Periodic for any choice of ω_0	Periodic only if $\omega_0 = 2\pi m/N$ for some integers $N > 0$ and m .
Fundamental frequency ω_0	Fundamental frequency* ω_0/m
Fundamental period $\omega_0 = 0$: undefined $\omega_0 \neq 0$: $\frac{2\pi}{\omega_0}$	Fundamental period* $\omega_0 = 0$: undefined $\omega_0 \neq 0$: $m \left(\frac{2\pi}{\omega_0} \right)$

* Assumes that m and N do not have any factors in common.

34

Example 1.6

- Determine the fundamental period of the discrete-time signal $x[n]=e^{j(2\pi/3)n}+e^{j(3\pi/4)n}$.
- The first exponential on the right-hand side has a fundamental period of 3. (3x $2\pi/3=2\pi$)
- For the second term, the fundamental period is 8. (8x $3\pi/4=6\pi$, the smallest multiple of 2π)
- The smallest increment of n that simultaneously satisfies the two terms is 24.

35

1.4 The unit impulse and unit step function

1.4.1 The Discrete-Time Unit impulse and unit step sequences

- Unit pulse:

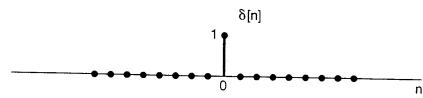


Figure 1.28 Discrete-time unit impulse (sample).

$$\delta[n] = \begin{cases} 0, & n \neq 0 \\ 1, & n = 0 \end{cases}$$

- Unit step:

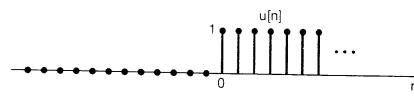


Figure 1.29 Discrete-time unit step sequence.

$$u[n] = \begin{cases} 0, & n < 0 \\ 1, & n \geq 0 \end{cases}$$

36

$$\delta[n] = u[n] - u[n-1]$$

$$u[n] = \sum_{m=-\infty}^n \delta[m] = \sum_{k=0}^{\infty} \delta[n-k]$$

$x[n]\delta[n] = x[0]\delta[n]$, $\delta[n]$ is non zero only for $n = 0$.

Similarly, $x[n]\delta[n-n_0] = x[n_0]\delta[n-n_0]$

37

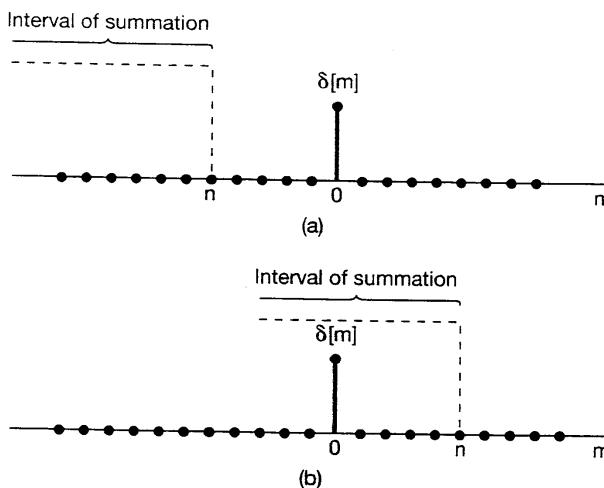


Figure 1.30 Running sum of eq. (1.66): (a) $n < 0$; (b) $n > 0$.

38

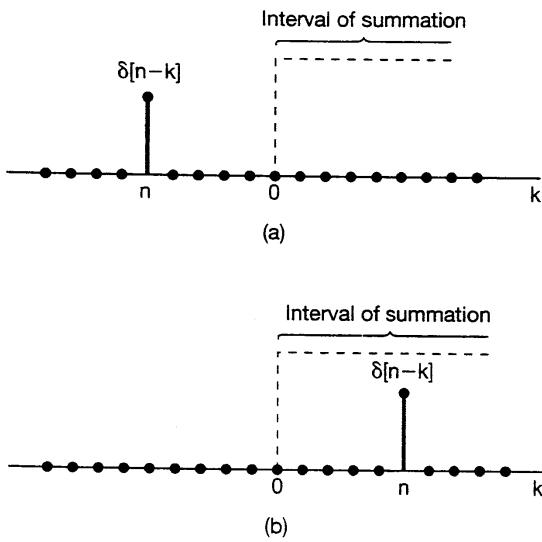


Figure 1.31 Relationship given in eq. (1.67); (a) $n < 0$; (b) $n > 0$.

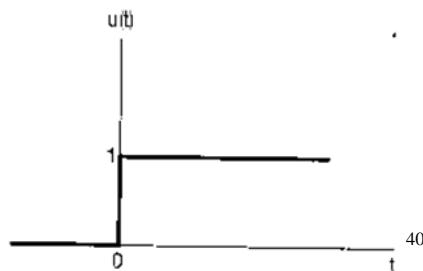
39

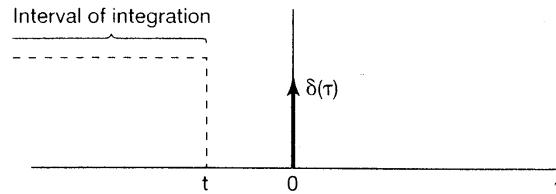
1.4.2 The Continuous-time unit impulse and unit step sequences

$$u(t) = \begin{cases} 0, & t < 0 \\ 1, & t > 0 \end{cases}$$

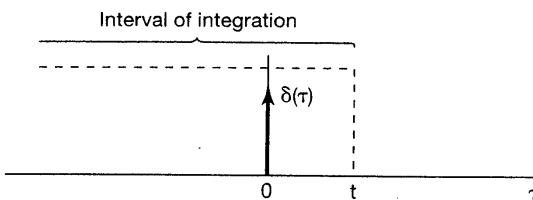
$$u(t) = \int_{-\infty}^t \delta(\tau) d\tau = \int_0^{\infty} \delta(t - \sigma) d\sigma.$$

$$\delta(t) = \frac{du(t)}{dt}.$$





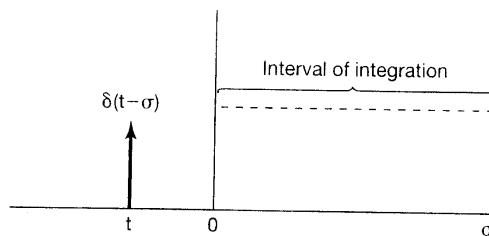
(a)



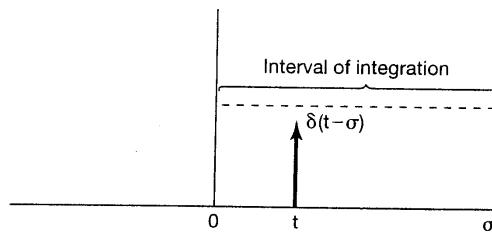
(b)

Figure 1.37 Running integral given in eq. (1.71):
 (a) $t < 0$; (b) $t > 0$.

41



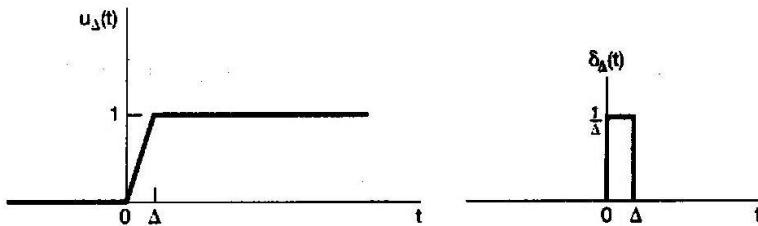
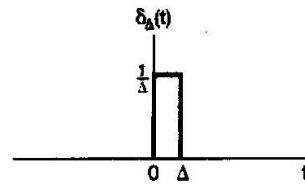
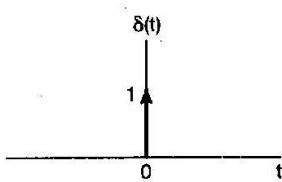
(a)



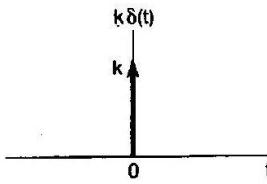
(b)

Figure 1.38 Relationship given in eq. (1.75):
 (a) $t < 0$; (b) $t > 0$.

42

■ 1.33 單位步級 $u_\Delta(t)$ 的連續近似■ 1.34 $u_\Delta(t)$ 的導數

■ 1.35 連續時間單位脈衝

■ 1.36 脈衝強度 k 的脈衝

1.5 Continuous-time and discrete-time system representation

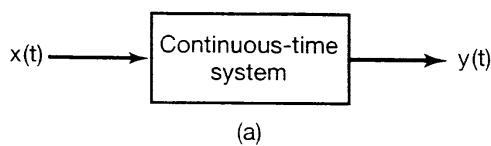
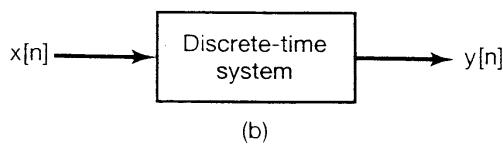


Figure 1.41 (a) Continuous-time system; (b) discrete-time system.

1.5.1 Simple Examples of Systems

- Example 8 – the RC circuit depicted in Fig. 1.1
- Example 9 – Fig. 1.2
- Example 10 – A simple model of the balance in a bank account from month to month
- Example 11 – a simple digital simulation of the differentiation equation

45

1.5.2 Interconnections of systems

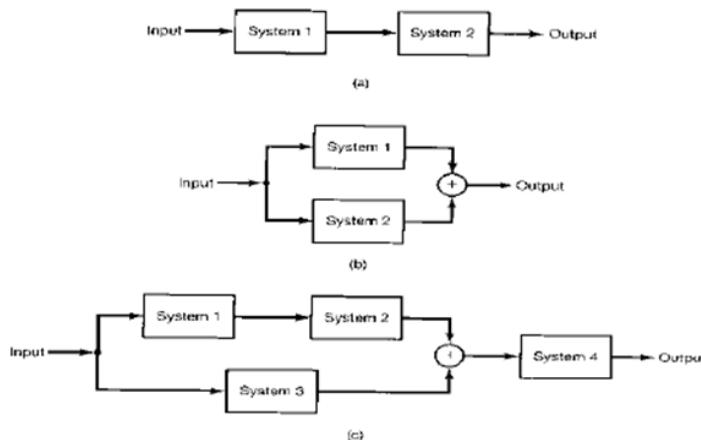


Figure 1.42 Interconnection of two systems:
(a)series(cascade); (b) parallel; (c)series-parallel.

46

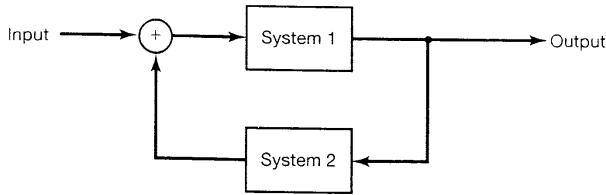
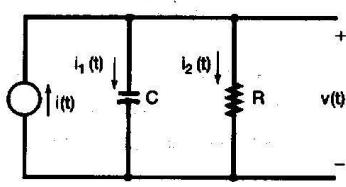
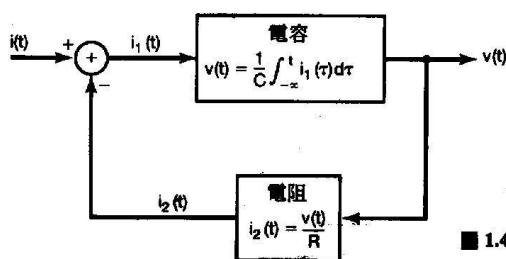


Figure 1.43 Feedback interconnection.

47



■ 1.44 (a)簡單的電子電路; (b)將(a)的電路畫成兩個電路元件反饋互聯的方塊圖

48

1.6 Basic system properties

- 1.6.1 Systems with and without memory
 - **Memoryless** system: its output for each value of the independent variable at a given time is dependent on the input at only that same time.
 - For example: $y[n] = (2x[n] - x^2[n])^2$
 - An example of a discrete-time system with **memory** is an accumulator or summer: $y[n] = \sum_{k=-\infty}^n x[k]$.
 - Second example: Delay: $y[n] = x[n-1]$

49

*The concept of **memory** in a system corresponds to the presence of a **mechanism** in the system that retains or stores information about input values at times other than the current time.*

- Continuous-time system with memory:
 - Capacitor: input is current and output is the voltage (C is the capacitance)
$$y(t) = \frac{1}{C} \int_{-\infty}^t x(\tau) d\tau$$
- Accumulator: add the current input value to the preceding value of the running sum.

$$y[n] = \sum_{k=-\infty}^{n-1} x[k] + x[n] = y[n-1] + x[n]$$

50

1.6.2 Invertibility and Inverse system

- A system is said to be **invertible** if distinct inputs lead to distinct outputs. For example,

$$y(t) = 2x(t).$$

For which the inverse system is

$$w(t) = \frac{1}{2}y(t)$$

- Examples of noninvertible systems are

$y[n] = 0$, produces zero output sequence for any input sequence.

$y(t) = x^2(t)$, can't determine the sign of the input from knowledge of the output

51

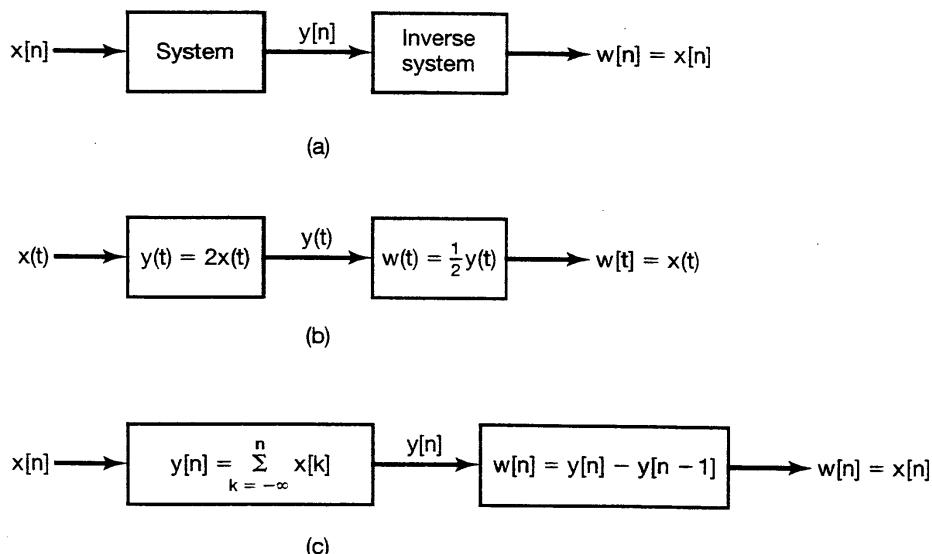


Figure 1.45 Concept of an inverse system for: (a) a general invertible system; (b) the invertible system described by eq. (1.97); (c) the invertible system defined in eq. (1.92).

• 1.6.3 Causality

- A system is *causal* if the output at any time depends only on values of the input at the **present time and in the past**.
- All **memoryless** systems are causal since the output responds only to the current value of the input.

Causal example: $y[n]=x[-n]$, $n>0$

Non-causal example: $y[-4]=x[4]$

$y(t)=x(t)\cos(t+1)$ → causal or noncausal?

53

1.6.4 Stability

- **BIBO** property: Bounded input leads to bounded output
- $y(t)=tx(t)$ → stable? **No**
- If $x(t)=1$ (bounded input), then $y(t)=t$, which is unbounded.
- $y(t)=\exp[x(t)]$ → stable? **Yes**
- If $|x(t)| < B$, $-B < x(t) < B$ (bounded input), then $\exp[-B] < \exp[x(t)] = y(t) < \exp[B]$, output is bounded.

54

1.6.5 Time Invariance

Conceptually, a system is **time invariant** if the behavior and characteristics of the system are **fixed over time**. For example, the RC circuit of figure shown below is time invariant if the resistance and capacitance values R and C are constant over time.



Example of time invariance:

$x[n] \rightarrow y[n]$ after a time shifting of input signal $x[n-1]$

$x[n-1] \rightarrow y[n-1]$ identical time shift in the output signal $y[n-1]$

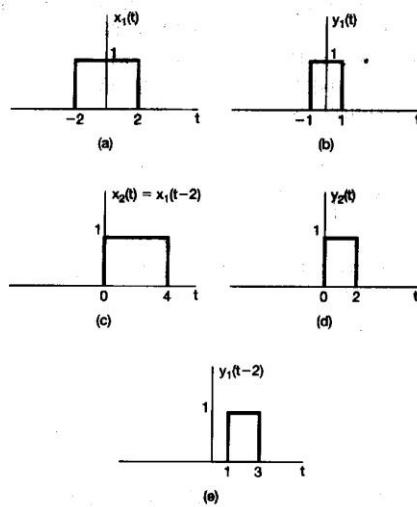
55

Examples 1.14 & 1.15

56

Example 1.16

Consider the system $y(t)=x(2t)$, **time variant**



■ 1.47 (a)對例題 1.16系統的輸入 $x_1(t)$; (b) $x_1(t)$ 的相對應輸出 $y_1(t)$; (c) 位移的輸入 $x_2(t) = x_1(t-2)$; (d) $x_2(t)$ 相對應的輸出 $y_2(t)$; (e) 移位信號 $y_1(t-2)$ 。注意：在 $y_2(t) \neq y_1(t-2)$ 時證明系統是時變的。

57

1.6.6 Linearity

- A **linear** system is a system that possesses the important property of **superposition**: if an input consists of the weighted sum of several signals, then the output is the superposition — that is, the weighted sum — of the responses of the system to each of those signals.
- For example, the following system is **linear** if:

$$\begin{aligned}
 \text{input} &\rightarrow \text{response output} \\
 x(t) &\rightarrow y(t) \\
 x_1(t)+x_2(t) &\rightarrow y_1(t)+y_2(t) \\
 ax_1(t)+bx_2(t) &\rightarrow ay_1(t)+by_2(t)
 \end{aligned}$$

where a and b are any complex constants.

58

Examples 1.17, 1.18, 1.19

- $y(t)=tx(t) \rightarrow$ linear
- $y(t)=x^2(t) \rightarrow$ not linear
- $y(t)=Re\{x(t)\} \rightarrow$ not linear

59

Example 1.20

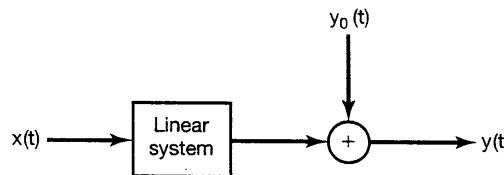


Figure 1.48 Structure of an incrementally linear system. Here, $y_0[n]$ is the zero-input response of the system.

- $y[n]=2x[n]+3$
- Responds **linearly to changes in the input**
- That is, the difference between the responses to any two inputs is a **linear** function of the difference between two inputs.
- **Incrementally** linear systems

60

1.7 Summary

Through the chapter, we have learned about:

- Continuous-time signals and discrete-time signals
- Energy and power
- Odd and even signals
- Exponential and sinusoidal signal
- Periodical and non periodical signal
- Unit impulse and unit step function
- Time variance and time invariance
- Linear and nonlinear systems

The primary focus of this book will be on the class of linear, time-invariant system (LTI system.)

61