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Chapter 2
Linear Time-Invariant System

2.0 Introduction

Two reasons we focus on the properties, linearity and

time Invariance:

First, many physical processes possess these properties
and thus can be modeled as linear time-invariant (LTI)

systems.
In addition, LTI systems can be analyzed in considerable

detail, providing both insight into their properties and a
set of powerful tools that form the core of signal and

system analysis.



 |f we can represent the input to an LTI system in
terms of a linear combination of a set of basic
signals, we can then use superposition to compute the

output of the system in terms of its response to the
basic signals.

» One of the important characteristic of the unit
Impulse, in both the discrete-time (D-T) and
continuous-time (C-T), Is that very general signals

can be represented as linear combination of delayed
Impulses.



 This fact, together with the properties of
superposition and time invariance, Is used
to develop a complete characterization of
any LTI system in terms of its response to a
unit impulse.

— D-T case: convolution sum
— C-T case: convolution integral



2.1 Discrete-time LTI system: The convolution sum

2.1.1 The representation of discrete-time signals in terms of impulses

The key idea in visualizing how the discrete-time unit impulse can be used
to construct any discrete-time signals is to think of a discrete-time signal as a
sequence of individual impulse.

Consider the signal x[n] depicted in Figure 2.1(a). We have

x[n] = Y- _ox[k]d[n — k. (Eq. 2.2)

To consider the unit step signal u(t), we can construct it using the unit impulse
signals as:

uln] = S[n — k.
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Figure 2.1  Decomposition of a
discrete-time signal into a weighted
(f) sum of shifted impulses.



« An arbitrary sequence can be represented as a
linear combination of shifted unit impulses J[n-

kK], where the weights in this linear combination
are x[K].

 For example, u[n]= Z5[n — K]
k=0



2.1.2 The discrete-time unit impulse response and
the convolution-sum representation of LTI systems

With the arbitrary input x[n] to a linear (but possibly time-

varying) system expressed in the form of the eqg. (2.2), let
h,[n] denote the response of the linear system to the shifted
unit impulse 8|n — k|, the output y[n] can be expressed as

y[n] = X2l x[k]hy[n]. (2.3)



» According to eqg. (2.3), If we know the
response of a linear system to the set of
shifted unit impulses, we can construct the
response to an arbitrary input.

 If h [n] is known, the response to an arbitrary
Input can be constructed.

» The system output y[n] at time n Is simply the
superposition of the response due to the input
value at each point in time.



x[n]

h_4[n] ho [n] hy [n]

(b)

Figure 2.2 Graphical interpretation of the response of a dlscrete—tlme linear
system as expressed in eq. (2.3).
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Figure 2.2 Graphical interpretation of the response of a discrete-time linear
system as expressed in eq. (2.3). x|T]dln-1]
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If the linear system is also time invariant, then these
responses to time-shifted unit impulses are all time-shifted
versions of each other. Specifically, since §[n], the response
h.[n] Is a time shifted version of h [n];1.e.,

h[n]=ho[n-k]. (2.4)
For notational convenience, let
h[n]=h,[n]. (2.5)

Then eq.(2.3) becomes
y[nl = $k% o x[klh[n — k] (26)

This result is referred to as the convolution sum or
superposition sum. We will represent the operation of
convolution symbolically as

y[n]=x[n]*h[n] (2.7)
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Figure 2.3 (a) The impulse response h[n} of an LTI system and an input
x[n] to the system; (b) the responses or “echoes,” 0.5h[n] and 2h[n — 1], to
the nonzero values of the input, namely, x[0] = 0.5 and x{1} = 2; (c) the
overall response y[n], which is the sum of the echos in (b).
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o0

y[n]= D x[k]h[n—k]
K=—c0
 The calculation of convolution can be displayed
graphically. It begins with the two signals x[k] and
h[n-k] and is a function of k.
— How to get x[k] and h[n-k]?
— x[n]=> x[K], h[n]=>h[k]>h[-k]>h[n-K]
» g[k]=x[k]h[n-k], at each time kK, It represents the
contribution of x[k] to the output at time n.

« Summing all g[k] at each k yields the output value
y[n] at the selected time n.
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Figure 2.4 Interpretation of eq. (2.6) for the signals A[n] and x[n] in Fig-
ure 2.3, (2) the signal x[4] and (b} the signal h{n — k] (as a function of k
with n fixed) for several values of n (7 < 0; n = 0,1, 2, 3; n > 3). Each

of these signals is abtained by reflection and shifting of the unit impulse re-
sponse k). The response y[n] for each value of 7 is obtained by multiplying
the signals x[] and h[n — k] in (b) and (c) and then summing the products
over all values of k. The calculation for this example is carried out in detail in
Example 2.2.

Example 2.2: n
determines the
position of h[n-k]
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Example 2.2

For n<0, x[k]h[n-k]=0 for all k

y[n]=0 for n <0
y[0] = z x[k]h[0—k] =05,  y[1] = Z x[k]h[1 — k] = 2.5,

(00) oo

y[2] = z x[klh[2 — k] = 2.5, y[3] = Z x[kJh[3 — k] = 2.0

k=—o0 k=—

for n>3, x[k]h[n-k]=0 for all k



Example 2.3

«(n] = o"uln] 4

Wol”mmmmm

(a)

h[n} = uin|
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igure 2.5 The signals x[n] and h{n] in Example 2.3.
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Figure 2.6 Graphical interpretation of the calculation of the convolution

sum for Example 2.3.
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n<0, x[k]h[n—k]=0for all k,

a®, 0<k<n

otherwise

Cforn>0

n+1
(1—04 ju[n], see Fig. 2.7
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Figure 2.7 Output for Example 2.3.
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Example 2.4
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Figure 2.8 The signals to be convolved in Example 2.4.
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Figure 2.9 Graphical interpretation of the convolution performed in
Example 2.4.
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Figure 2.10 Result of performing the convolution in Example 2.4.

Example 2.5
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Figure 2.11 (a) The sequences x[k] and #[n— k] for the convolution prob- 23

lem considered in Example 2.5; (b) the resulting output signal y[n].



Example 2.5

o x|n| = 2"u[—n], h|n] = u[n] = x[k]=0 for k>0, h[n-k]=0
for k>n

0

0
y[n] = x[k]h[0 — k] = 2k (for n>=0)
). 2.

k=—o0

z ak = 1%, 0 < |a|l <1 (infinite sum formula)
k=0
0 00
S Z 2k — Z(%)k ——2 (n > 0)
k=—o0 k=0 -
y[n] = Z x[k]h[n — k] = Z 2k (n < 0)

k=—o0 kK=—o0
(0 0)

- i G'= Y = ) i G =202 =27
l=—n m=0 m=0



2.2 Continuous-time LTI Systems: The
Convolution Integral

« 2.2.1 The representation of continuous-time signals
In terms of impulses

— In the preceding section, we can think of the discrete-
time system as responding to a sequence of individual
Impulse. In continuous time, we do not have a discrete
sequence of input values. If we think of the unit impulse
as the idealization of a pulse which is so short that its
duration is inconsequential for any real, physical system,
we can develop a representation for arbitrary
continuous-time signals in terms of these idealized

pulses with vanishingly small duration, or equivalently,

Impulses. ”



2.2.1 The representation of continuous-time
signals in terms of impulses

To develop the continuous-time counterpart of the
discrete-time shifting property in eg. (2.2), we begin by
considering a pulse or “staircase” approximation, X(t), to a
continuous-time signal x(t), as tllustrated in Figure 2.12(a).

If we define

I o<t<A

6p(t) = 1A
0, Otherwise.
Then, we have the expression
P(O)() = ThZ oo x(kD)S,(t — kDA, (2.25)
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Figure 2.12 Staircase approxima-
tion to a continuous-time signal.
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As we let A approach 0, the approximation X(t)
becomes better and better, and in the limit equals x(t).

Therefore,

x(t) = lim z x(kD)S,(t— kM)A, (2.26)

k=—o0

28
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Figure 2.13 Graphical interpreta- 29
() tion of eq. (2.26).



Also. as A=), the summation 1n eq. (2.26) approach an

integral. Hlustrated in figure 2.13.
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consequently, X(7) = j_ ) X(T)0(1—1)dT. (2.27)

Signal x(t) can be represented as a sum (more precisely, an
Integral) of weighted, shifted impulses, as shown in Eqg.
(2.27)
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(@
S{t—7)
;
X(2)o(t—7)=x(t)o(t—7)

t 1

(b)

X(7)8(t—7) = x(t)3(t—7) ()

A

Figure 2.14 (a) Arbitrary signal
x{7); (b) impulse &(t— ) as a functio

t v of = with £ fixed; (c) product of these
(©) two signals. 31



2.2.2 The continuous-time unit impulse response and
the convolution integral representation of LTI systems

Eq. (2.25) represents the signal x(t) as a sum of scaled and
shifted versions of the basic pulse signal §,(t).

Let us define hy,(t) as the response of an LTI system to the
Input 5, (t — kA).
The response y(t) of a linear system to this signal will be the

superposition of the responses to the scaled and shifted
versions of 6,(t). Then

+00

(1) = Z 2 (kA Ra (DA (2.29)

k=—o

32
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%

®

A
X(KA)h, (DA

y(t)
’\/\/\/\« Figure 2.15 Graphical interpreta-

tion of the response of a continuous-
time linear system as expressed in
eqs. (2.29) and (2.30).
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Since the pulse 6, (t — kA) corresponds to a shifted unit
impulse as A— 0, the response h.,(t) to this input pulse
becomes the response to an impulse in the limit. Therefore,
If we let h (t) denote the response at time t to a unit impulse
d(t — 7) located at time T, then

y(t) = lim z 2 (kA s (DA (2.30)
k=—o00

As A— 0, the equation can seen graphically in Fig. 2.16.
Therefore,

Yor f R (dr. (2.31)

and input  x(t) = fj; x(1)6(t — 1)dT.
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Shaded area = x(kA)h,,(HA

kA (k+1)A

Figure 2.16 Graphical illustration
of egs. (2.30) and (2.31).

35



* |f the system is also time-invariant, then
h.(t) =h(t—7)

As the same conception of discrete-time system, eq.
(2.31) can seen as

y(t) = J+oox(r)h(t — 7)dT. (2.33)

This result i1s referred to as the convolution integral or
superposition integral . We will represent the operation
of convolution symbolically as

y(t) = x(t) = h(t). (2.343)6



A continuous-time LTI system is completely
characterized by its impulse response h(t).

» The procedure for evaluating the convolution
Integral:

— h(z) - h(t—7) : Reflecting about the origin and shift
to the right by t if t >0, or a shift to the left by |t| for t <0

— X(z)xh(t —7) : y() is obtained by integrating the
resulting product from 7 =—c0t0 7 =00

37



Example 2.6

X(t)=eu(t), a>0
h(t) = u(t)

X(o)h(t—7) = {

ar

e, O<r<t
0, otherwise

t
y(t) = [edr =—Ze
0 a

1 & , 1
:——e _(— —
et ()
1
=—(1-e™), t>0
a

= %(1—e‘at)u(t)

hir)

0 T
x{T)
1 N
0 T
h{t—1)
1
t<0
t 0 T
h(t—m)
t>0
0 t T

Figure 2.17

Calculation of the convolution integral for Example 2.6.38
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Figure 2.18 Response of the system in Example 2.6 with impulse re-
sponse A(t) = u(t) to the input x(t) = e~ u(t). -

39



xnl=" X[K]6[n —k]

X(t) = T X(r)o(t—7)dr

o0

y[n]= > x[kIh[n—k]=x[n]*h[n]

K=—00

y(t) = TX(Z‘)h(t —7)d7z = Xx(t) *h(t)

40



Example 2.7

X(t) =+

h(t) =<

(

(1 O<t<T
0, otherwise

t, O<t<2T

0, otherwise

TTTTTT

Figure 2.19
Example 2.7.

Signals

x{T} an

d At —

7) for differen

t values of ¢ for
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D<t<T
t
0 t
(a)
x(7) h(t—7)
t T<t<2T
t—T
0 T
(b)
x(r)h{t—1)
2T
t—T [1 2T <t< 3T
TT
t—2T

(c)

Figure 2.20  Praduct x(r)h(t — ) for Example 2.7 for the three ranges of
values of ¢ for which this product is not identically zero. (See Figure 2.19.)
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Example 2.7

1,0<t<T
0, otherwise ’

t,0<t<?2T
0, otherwise

x(t) = { h(t) = {

t<0,t>3T »>x(0)h(t—1)=0,-y(t) =0

() = foox(r)h(t — Ddr

t t 1 1
O>t<T—>y(t)=j(t—T)dT=(tT—T2) 0=t2—§t2=—t2
0T
T 1,
T>t<2T—>y(t)=j (t — t)dt = (tt — 72) 0=Tt—§T
T T 1 3
2T>t<3T—>y(t)=j (t — t)dt = (tt — 72) = ——t24Tt+-T?




y(®)

0 T 2T 3T t

Figure 2.21 Signal y(t) = x(t) * h(t) for Example 2.7.
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/‘1 o Example 2.8
T X(t) = e”'u(-t)

=) | x(7) = e“u(-r)
— | 1) = u(t—3)
- T N(7) =u(z -3),
? N(—7) =u(-7 —3)
: N(t—7)=u(t—7-3)
2L~ =u(t=3-7)

45
Figure 2.22  The convolution problem considered in Example 2.8.



Example 2.8

x(t) = e?tu(—t) , h(t) = u(t — 3)

y(t) = foox(r)h(t —17)dTt

t—-3 1
t—3<0-y(t) = j e?Tdr = Eez(t—3)

0
1
t—320—>y(t)=j eZTdr:E



2.3 Properties of LTI Systems

 Convolution sum and convolution integral:

o0

yIn]= 2 x[kIh[n—k]=x[n]*h[n]

K=—o0

y(t) = T X(7)h(t —7)dz = x(t) *h(t)

» The properties (characteristics) hold in general only for
LTI system. The unit impulse response of a nonlinear
system does not completely characterize the behavior of
the system.
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2.3 Properties of linear time-invariant
(LTI) systems

2.3.1 The commutative property:
In discrete time

x[n] * h[n] = h[n] * x[n] = Z hk]x[n — k], (2.43)

In continuous time

x(t) *h(t) = h(t) *x(t) = f+ooh(r)x(t —1)dt. (2.44)
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2.3.2 The distributive property

In discrete time
x[n] * (hy[n] + hy[n]) = x[n] = hy[n] + x[n] * hy[n], (2.46)

And In continuous time
x(t) * [h(t) + hy(£)] = x(t) * hy(t) + x(t) * hy(¢). (2.47)

l

| /o(t)
__>| ha(1) _‘
./"'\
o —— { + }——.:.-l
S
S | 1120 1) l——r
¥l
{a)
K1) —— 11 4 (1) e 1) Figure 2.23 Intarpretation of the
| distributive property of convolution 49
> for a paralie! interconnection of LTI
|

Systems



Example 2.10

y[n] = x[n]*h[n]

P I - x[n]=(1/2)"u[n]+2"u[-n],
3 =X [n]+ x,[n]
' h{n]=u[n]
. _y[n]= (% [n]+x,[n]) *h[n]

=X [n]*h[n]+ x,[n]*h[n]

“-3—2—101234567
224 (U 210 BOEMyln] = xin) + hln] y;,[n]+y,[n]
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2.3.3 The assoclative property

In discrete time
x[n] = (hqy[n] = hy[n]) = (x[n] * hy|n]) = hyIn]. (2.58)

In continuous time
x(t) * [hy(t) * hy(t)] = [x(£) * hy(2)] * hy(t). (2.59)
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X[n] =———a{ hy[n] [e————_{ b [n] p=——3> y(n]

X[N] e W[N] = hy[n] +h3[N] e (]

(b)

x[n] ===—=——->-1 hin] = hyn] +hy [n] = yIn]

()

X[N] w15 [N]  fe——p=t hy[A]  p———3 y[n]

Figure 2.25 Associative property of
convolution and the implication of this
and the commutative property for the
series interconnection of LTI systems.



2.3.4 LTI system with and without memory

In particular, a continuous-time LTI system is
memoryless if h(t)=0 for t+0, and such a memoryless
LTI system has the form

y(t) = Kx(t) (2.46)
For some constant K and has the impulse response

h(t) = Ké(t). (2.65)
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2.3.5 Invertibility of LTI systems

The system is invertible only If an inverse system exists
that, when connected In series with the original system,

X(t) st hi(t)

y(t)

hy(t)

e

Identity system
5(t)

()

- X(t)

produces an output equal to the input to the first system.
~urthermore, If an LTI system is invertible, then it has an
_TI Inverse.

Figure 2.26 Concept of an inverse
system for continuous-time LTI sys-
tems. The system with impulse re-
sponse /(1) is the inverse of the
system with impulse response h(t) if

h{t) = i (t) = 8(b).



Example 2.11

An LTI system: y(t)=x(t-t,) (2.68)

Such a system is a delay If t,>0 and Is an
advance If t,<0.

The impulse response for the system can be
obtained from eg. (2.68) by taking the input
to o (1), I.e.

h(t)=0 (t-1y), X(t-1p)=x(t)* 5 (t-;)
I we take h, (1)=0 (t+t,), then
h(©)*hy (D=5 (t-to)* S (t+)=5(t)
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Example 2.12

Consider an LTI system with impulse response
h[n]=u[n].
Using convolution sum

o0

yIn]= > x[kIh[n—Kk]=x[n]*h[n]

k=—00

Since u[n-k]=0 for n-k<0 and 1 for n-k >=0,

yIn]= > xIK]

K=—00

This system Is a summer or accumulator that
computes the running sum of all the values of the
Input up to the present time.
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 Such system Is invertible, and its inverse Is

w[n]=y[n]-y[n-1]=x[n].
(analogy tory[n]=x[n]x(n-1])
which Is simply a first difference operation.

« Choosing x[n]=dn], we find that the impulse
response of the inverse system Is

hy[n]= & [n]-& [n-1]
h[n]*h,[n] = u[n]*{dn]-&[n-1]}
= u[n]*o [n]-u[n]*o[n-1]
= u[n]-u[n-1]=06[n]
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2.3.6 Causality for LTI systems

The output of a causal system depends only on the present
and past values of the input to the system.

In order for a discrete-time LTI system to be causal, y[n]
must not depend on x[k] for k>n. For this be true, all of the
coefficients h[n-k] that multiply values of x[k] for k>n
must be zero. And

hin] =0 forn <0 (2.77)
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For a causal discrete-time LTI system, the condition in
eq. (2.77) implies that the convolution sum representation In
eg. (2.6) and (2.7) becomes

n

ylnl = ) x[klhln - k] (2.78)
k=—0o0
And the alternative equivalent form, eq.(2.43), becomes
yln] = ) hlklx[n - K], (2.79)
k=0

Similarly, a continuous-time LTI system Is causal if
h(t) =0 fort<o, (2.80)

And In this case the convolution integral is given by

y(t) = ft x(t)h(t — 7)dt = fooh(r)x(t —1)dt. (2.81)
—0 0 59



* The pure time shift impulse with impulse
response h(t)=o (t-t,) Is causal for t,>=0,
but I1s noncausal for t,<0

« Causality of an LTI system is equivalent to
Its Impulse response being a causal signal.
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2.3.7 Stability for LTI systems

A system Is stable if every bounded input produces a
bounded output. Consider an input x[n] that is bounded In
magnitude: [x[n]|<B, for all n. Then

k=—c0
ylnll < ) |hlkllxln - ],
k=—c0
ly[n]| £ B |h[k]| For all n. (2.85)
- k=z—oo
> 1hlK]| < s (2:86)



In continuous case,

Iy(t)l+oo o
= |f h(t)x(t — 1)dt| < Bj |h(7)|dT

f+ |h(7)|dT < 0. (2.87
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Example 2.13

3" h{Kl <=0 and [|h()|dr <o
k=—c0 e

« Consider a system that Is
a pure time shift in either

continuous time or Y Ihin]l= 31 SIn—n,] =1
discrete time. n=—c0 —_—
and

» Then we conclude that [In@)1dz = [16(—t,) [dr =1
both of these systems are o
stable.
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Now consider the accumulator and integrator

« Impulse response functions h[n]=u[n], h(t) =u(t)

In discrete time, Z|h[n]| Z|u[n]| _Zu[n] o0, Not summable
and
in continuous time, jh(r)df = j| u(z)|dz :ju(f)df — o0,

—00 0

.. both systems are unstable!
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2.3.8 The unit step response of an LTI system |s[n]=u[n]*h[n] = h[n]*u[n]

The unit step response, s[n] or s(t), corresponding to
the output when x[n]=u[n] or x(t)=u(t). Then

sin] = u[n] = hn]. » s[n] can be seen
s[n] is the unit step response of the accumulator. g the response
Therefore, i to the input h[n]
with unit step
sin| = uln — klhlk] = hlk]. (291
[n] k; [n — k]hlk] k:zoo @91 e
And  h[n]=s[n]-s[n-1]. (292 * Usethe result
Similarly, in continuous time, shown in EX.
t 2.12, we can get
And  h(t) = ds(t) s'(t) (2.94)
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* |n both continuous and discrete time, the
unit step response can also be used to
characterize an LTI system.
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2.4 Causal LTI systems described by
differential and difference equations

An extremely important class of both continuous-
time systems and discrete-time systems is that for
which the input and output are related through a
linear constant-coefficient differential equation.

Because 1t’s too easy, we can study by ourselves
without discuss on the class.
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2.4.1 Linear constant-coefficient
differential equations

o d
Example 2.14 36’1(t ) + 29(0) = x(t)
X(t): Input
y(t): output
x(t)=Ke3tu(t), where K is a real number

A general Nth-order linear constant-coefficient
differential equation is given by

N

dyt) ~o  dix(t)
z ak AL = 2 b
dtk ko dtk 68
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2.4.2 Linear constant-coefficient
difference equations

 Nth-order linear constant-coefficient difference

equation M
; ZakY[n—k]=zka[”—k]

k=0

Y[ﬂ]——{zb X[n—K]- ZaKY[ﬂ Sh

okO

 To calculate y[n], we need to know y[n-1], ...,
y[n-N]. It's a recursive equation.
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Example 2.15

yIn] —% y[n—1] = x[n] = y[n] = x[n] +§ y[n—1]

to begin the recursion, we need an initial condition.
consider x[n] = Ko[n],x[n]=0 for n<-1

— y[n]=0 for n<-1

1 1 1
ylO] = x[0]+ Z yl-1] = K, Yyl = X1+ = y[0] = 2 K

1 1.,
yI21 = x[21+ - yIl = (5)* K
— y[n]= x[n]+%y[n _1]= (%)” K

Setting K =1, xX[n]=o[n]. Thus h[n] = (%)”u[n]

— An impules response of infinite duration
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2.4.3 Block diagram representation of 1st
order systems described by differential and
difference equations

y[n]+ay[n—1] =bx[n],= y[n] = —-ay[n—-1]+bx[n]

Three basic operations for block diagram
representation: addition, multiplication by a
coefficient, and delay (Fig. 2.27)
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Figure 2.27 Basic elements for
the block diagram representation
XN —— D > X[n—1] of the causal system described by
eq. (2.126): (a) an adder; (b) multi-
plication by a coefficient; (c) a unit
© delay.
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y[n]+ay[n—1] =Dbx[n],= y[n] = —ay[n—1]+ bx[n]

Figure 2.28 Block diagram repre-
-a I sentation for the causal discrete-time
yln—1] system described by eq. (2.126).
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Continuous-time system

dy(t) +ay(t) =bx(t),= y(t) = —EMJ“ 3 X(t)

dt a dt
Xo(t)
X1(t) X1(t) + xa(t)
(@)
a
X(t) —— ax(t)
(b)
Figure 2.29 One possibie set of
dx(t) basic elements for the block diagram
Xt)—— D > representation of the continuous-time
system described by eq. (2.128):

(2) an adder; (b) multiplication by a 4
©) coefficient; (c) a differentiator.



y() 1dy() b

+ay(t) =bx(t),= y(t) =- it

b/a
X(t) —*—»@——T——» y(1)

D Figure 2.30 Block diagram
representation for the system in

x(t)
a

egs. (2.128) and (2.129), using adders
—1/a | dy(t) multiplications by coefficients, and
— dt differentiators.
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« Differentiators are both difficult to implement and
extremely sensitive to errors and noise

dy(t) | ey
el bx(t) —ay(t)

=y =] L[ bx)-ay(ede

* |n this form, our system can be implemented using
the adder, coefficient multiplier, together with an
Integrator.
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Figure 2.31  Pictorial representation
of an integrator.

y(©) = [ [bx(z)-ay(z)ldz

> V()

Figure 2.32 Block diagram rep-
resentation for the system in egs.
(2.128) and (2.131), using adders,
multiplications by coefficients, and in-
tegrators.
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Season pass

* On the first day of college, the dean
addressed the students, pointing out some of
the rules:

"The female dormitory will be out-of-bounds
for all male students, and the male dormitory
to the female students. Anybody caught
breaking this rule will be fined $20 the first
time. Anybody caught breaking this rule the
second time will be fined $60. Being caught a
third time will cost you $180. Are there any
guestions?"

"How much for a season pass?"
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2.5 Singularity functions (usually skip)

In particular, in section 1.4.2 we suggested that a
continuous-time unit impulse could be viewed as the
1dealization of a pulse that 1s “short enough™ so that 1ts
shape and duration is of no practical consequence---i.e.,
so that as far as the response of any particular LTI system
IS concerned, all of the area under the pulse can be
thought of as having been applied instantaneously.

Following the example to show that the signals are In
essence defined in terms of how they behave under
convolution with other signals.
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2.5.1 The unit impulse as an idealized short pulse

From the sifting property, eq. (2.27), the unit impulse
d(t) Is the impulse response of the identity system.

That Is,
x(t) = x(t) *6(t) (2.133)

For any signal x(t). Let x(t)=6(t), we have

5(t) =6(t) = 6(t) (2.134)
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Suppose we think of §(t) as the limiting from of a
rectangular pulse. Let o, (t) correspond to the
rectangular pulse defined in figure 1.34, and let

rA(t) = 5A(t) * SA(t). (2.135)

where rA(t) IS as sketched in figure 2.33. If we wish to
Interpret 6 (t) as the limitas A— 0 of § (t), then, by
virtue of eq. (2.134), the limitas A— 0 tor rA(t) must
also be a unit impulse.
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Figure 1.34 Derivative of
sl ).

0 24

The key words 1n the preceding paragraph are “behave
like an impulse,” where, as we have indicated, what we
mean by this is that the response of an LTI system to all
of these signals is essentially identical, as long as the
pulse 1s “short enough,” 1.e., A 1s “small enough.”

Figure 2.33 The signal r,(f)
detined in €q. (2.139)
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2.5.2 Defining the unit impulse through
convolution

We define 6 (t) as the signal for which
x(t) = x(t) *6(t) (2.138)

For any x(t). If we replace 6 (t) by any of these signals,
then eq. (2.138) Is satisfied in the limit. If we let x(t)=1
for all t, then

1 =x(t) =x(t) *6(t) = 6(t) = x(t)
=f 6(t)x(t —1)dt =f é(t)dr.

so that the unit impulse has unit area.
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2.5.3 Unit doublets and other singularity
functions

The unit impulse is one of a class of signals known as
singularity functions, each of which can be defined
operationally in terms of its behavior under convolution.

Consider
dx(t)
y(t) = o

The unit impulse response of this system is the derivative
of the unit impulse, which is called the unit doublet u,(t).
We have

(2.143)

dx(t)
dt

= x(t) * u,(t) (2.144)
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Thereby,
dx(t)
dt?
From eq. (2.144), we see that

dzx(t) B d (dx(t)> _ X(t) " ul(t) * ul(t)_ (2146)

= x(t) * u,(t). (2.145)

de2  dt\ dt

and therefore,

u,(t) = u(t) * u (t). (2.147)
In general, u,(t), k>0, we have
u,(t) = Uy x ook Uy () (2.148)

K times

85



In the other way round, by the complex equation’s
deduction we’re not glad to see, we got the
conclusion:

t

u_()=ux--*u(t) = f u(t)dr. (2.157)
- k times - —®

To use an alternative notation for §(t) and u(t),

namely,

5 (t)=u(t) (2.159)

u(t)=u_,(t). (2.160)
Then, u(t)*u,(t)=46(¢t)

U1 (1) u()=u(t) (2.161)

uk(t)*ur(t):uk+r(t)- (2-162) 86



2.6 summary

Through the chapter, we have learned about:
 Convolution integral
 Causality and Stability

e Linear constant-coefficient differential and
difference equations

e Singularity functions

87



