
1

Signals and Systems

Instructor:   Dr. Hsuan T. Chang

Department of Electrical Engineering 

Yunlin University of Science and Technology



2

Chapter 2

Linear Time-Invariant System

2.0 Introduction

Two reasons we focus on the properties, linearity and 
time invariance:

• First, many physical processes possess these properties 
and thus can be modeled as linear time-invariant (LTI) 
systems.

• In addition, LTI systems can be analyzed in considerable 
detail, providing both insight into their properties and a 
set of powerful tools that form the core of signal and 
system analysis.
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• If we can represent the input to an LTI system in 
terms of a linear combination of a set of basic 
signals, we can then use superposition to compute the 
output of the system in terms of its response to the 
basic signals.

• One of the important characteristic of the unit 
impulse, in both  the discrete-time (D-T) and 
continuous-time (C-T), is that very general signals 
can be represented as linear combination of delayed 
impulses. 



• This fact, together with the properties of 

superposition and time invariance, is used 

to develop a complete characterization of 

any LTI system in terms of its response to a 

unit impulse.

– D-T case: convolution sum

– C-T case: convolution integral
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2.1 Discrete-time LTI system: The convolution sum

2.1.1 The representation of discrete-time signals in terms of impulses

The key idea in visualizing how the discrete-time unit impulse can be used 

to construct any discrete-time signals is to think of a discrete-time signal as a 

sequence of individual impulse. 

Consider the signal x[n] depicted in Figure 2.1(a). We have

𝑥 𝑛 =  𝑘=−∞
∞ 𝑥 𝑘 𝛿 𝑛 − 𝑘 . (Eq. 2.2)

To consider the unit step signal u(t), we can construct it using the unit impulse 

signals as:

𝑢[𝑛] =  

𝑘=0

∞

𝛿 𝑛 − 𝑘 .
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• x[n]= … x[-3]d[n+3] + 
x[-2]d[n+2] + x[-1] d[n+1] + 
x[0]d[n]+ x[1]d[n-1] + 
x[2]d[n-2] + x[3]d[n-3] + …
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• An  arbitrary sequence can be represented as a 

linear combination of shifted unit impulses d[n-

k], where the weights in this linear combination 

are x[k].

• For example, 





0

][][
k

knnu d



2.1.2 The discrete-time unit impulse response and 

the convolution-sum representation of LTI systems

With the arbitrary input x[n] to a linear (but possibly time-

varying) system expressed in the form of the eq. (2.2), let 

hk[n] denote the response of the linear system to the shifted 

unit impulse 𝜹 𝒏 − 𝒌 , the output y[n] can be expressed as

𝑦 𝑛 =  𝑘=−∞
+∞ 𝑥 𝑘 ℎ𝑘 𝑛 . (2.3)
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• According to eq. (2.3), if we know the 

response of a linear system to the set of 

shifted unit impulses, we can construct the 

response to an arbitrary input.

• If hk[n] is known, the response to an arbitrary 

input can be constructed.

• The system output y[n] at time n is simply the 

superposition of the response due to the input 

value at each point in time.
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Here x[-1], x[0], x[1],… are constants and 

thus are multiplied to each non-zero value 

of hk[n]



If the linear system is also time invariant, then these 

responses to time-shifted unit impulses are all time-shifted 

versions of each other. Specifically, since  𝛿[n], the response 

hk[n] is a time shifted version of ho[n];i.e.,

hk[n]=h0[n-k].                          (2.4)

For notational convenience, let 

h[n]=ho[n].                                   (2.5)

Then eq.(2.3) becomes

𝑦 𝑛 =  𝑘=−∞
+∞ 𝑥 𝑘 ℎ 𝑛 − 𝑘 . (2.6)

This result is referred to as the convolution sum or 

superposition sum. We will represent the operation of 

convolution symbolically as

y[n]=x[n]*h[n]                            (2.7)
12



13



14

• The calculation of convolution can be displayed 

graphically. It begins with the two signals x[k] and 

h[n-k] and is a function of k.

– How to get x[k] and h[n-k]?

– x[n] x[k], h[n]h[k]h[-k]h[n-k]

• g[k]=x[k]h[n-k], at each time k, it represents the 

contribution of x[k] to the output at time n.

• Summing all g[k] at each k yields the output value 

y[n] at the selected time n.







k

knhkxny ][][][
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Example 2.2: n

determines the 

position of h[n-k]



Example 2.2

For n<0, x[k]h[n-k]=0 for all k

y[n]=0 for n <0

𝑦 0 =  

𝑘=−∞

∞

𝑥 𝑘 ℎ 0 − 𝑘 = 0.5, 𝑦 1 =  

𝑘=−∞

∞

𝑥 𝑘 ℎ 1 − 𝑘 = 2.5,

𝑦 2 =  

𝑘=−∞

∞

𝑥 𝑘 ℎ 2 − 𝑘 = 2.5, 𝑦 3 =  

𝑘=−∞

∞

𝑥 𝑘 ℎ 3 − 𝑘 = 2.0

for n>3, x[k]h[n-k]=0 for all k



17

Example 2.3
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Example 2.4
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• 𝑥 𝑛 =  
1, 0 ≤ 𝑛 ≤ 4
0, otherwise

,

• h 𝑛 =  
𝛼𝑛, 0 ≤ 𝑛 ≤ 6
0, otherwise

for n<0, no overlap between x[k] and h[n-k]

for 0<=n<=4, 

𝑥 𝑘 ℎ[𝑛 − 𝑘] =  
𝛼𝑛−𝑘, 0 ≤ 𝑘 ≤ 𝑛
0 , otherwise

for 4<n<=6, 

𝑥 𝑘 ℎ[𝑛 − 𝑘] =  
𝛼𝑛−𝑘, 0 ≤ 𝑘 ≤ 4
0, otherwise

for 6<n<=10, 

𝑥 𝑘 ℎ[𝑛 − 𝑘] =  
𝛼𝑛−𝑘 , 𝑛 − 6 ≤ 𝑘 ≤ 4
0, otherwise

for n>10, no overlap between x[k] and h[n-k]
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Example 2.5



Example 2.5

• 𝑥 𝑛 = 2𝑛𝑢 −𝑛 , ℎ 𝑛 = 𝑢[𝑛] x[k]=0 for k>0, h[n-k]=0 

for k>n

𝑦 𝑛 =  

𝑘=−∞

0

𝑥 𝑘 ℎ 0 − 𝑘 =  

𝑘=−∞

0

2𝑘 (for n>=0)

 

𝑘=0

∞

𝛼𝑘 =
1

1 − 𝛼
, 0 < 𝛼 < 1 𝒊𝒏𝒇𝒊𝒏𝒊𝒕𝒆 𝒔𝒖𝒎 𝒇𝒐𝒓𝒎𝒖𝒍𝒂

→  

𝑘=−∞

0

2𝑘 =  

𝑘=0

∞

(
1

2
)𝑘 =

1

1 −
1
2

= 2 (𝑛 > 0)

𝑦 𝑛 =  

𝑘=−∞

𝑛

𝑥 𝑘 ℎ 𝑛 − 𝑘 =  

𝑘=−∞

𝑛

2𝑘 (n < 0)

=  

𝑙=−𝑛

∞

(
1

2
)𝑙=  

𝑚=0

∞

(
1

2
)𝑚−𝑛= (

1

2
)−𝑛  

𝑚=0

∞

(
1

2
)𝑚 = 2𝑛 ∙ 2 = 2𝑛+1
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2.2 Continuous-time LTI Systems: The 

Convolution Integral

• 2.2.1 The representation of continuous-time signals 
in terms of impulses

– In the preceding section, we can think of the discrete-
time system as responding to a sequence of individual 
impulse. In continuous time, we do not have a discrete 
sequence of input values. If we think of the unit impulse 
as the idealization of a pulse which is so short that its 
duration is inconsequential for any real, physical system, 
we can develop a representation for arbitrary 
continuous-time signals in terms of these idealized 
pulses with vanishingly small duration, or equivalently, 
impulses. 



2.2.1 The representation of continuous-time 

signals in terms of impulses

To develop the continuous-time counterpart of the 

discrete-time shifting property in eq. (2.2), we begin by 

considering a pulse or “staircase” approximation,  𝑥 𝑡 , to a 

continuous-time signal x(t), as illustrated in Figure 2.12(a).

If we define 

𝛿∆ 𝑡 =  
1

∆
, 0 ≤ 𝑡 < ∆,

0, Otherwise.

Then, we have the expression

 𝑦 𝑡 (𝑡) =  𝑘=−∞
+∞ 𝑥 𝑘∆ 𝛿∆ 𝑡 − 𝑘∆ ∆. (2.25)
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As we let ∆ approach 0, the approximation  𝑥 𝑡
becomes better and better, and in the limit equals x(t).

Therefore,

𝑥 𝑡 = lim
∆→0

 

𝑘=−∞

+∞

𝑥(𝑘∆)𝛿∆(𝑡 − 𝑘∆)∆ . (2.26)
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Signal x(t) can be represented as a sum (more precisely, an 

integral) of weighted, shifted impulses, as shown in Eq. 

(2.27)
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)()()()( dd  ttxtx



2.2.2 The continuous-time unit impulse response and 

the  convolution integral representation of LTI systems

Eq. (2.25) represents the signal  𝑥 𝑡 as a sum of scaled and 

shifted versions of the basic pulse signal 𝛿∆ 𝑡 .

Let us define  ℎ𝑘∆ 𝑡 as the response of an LTI system to the 

input 𝛿∆(𝑡 − 𝑘∆).

The response  𝑦 𝑡 of a linear system to this signal will be the 

superposition of the responses to the scaled and shifted 

versions of 𝛿∆ 𝑡 . Then

 𝑦 𝑡 =  

𝑘=−∞

+∞

𝑥(𝑘∆) ℎ𝑘∆(𝑡)∆ . (2.29)
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Since the pulse 𝛿∆(𝑡 − 𝑘∆) corresponds to a shifted unit 

impulse as ∆→ 0, the response  ℎ𝑘∆ 𝑡 to this input pulse 

becomes the response to an impulse in the limit. Therefore, 

if we let hτ(𝑡) denote the response at time t to a unit impulse 

𝛿(𝑡 − 𝜏) located at time τ, then

𝑦 𝑡 = lim
∆→0

 

𝑘=−∞

+∞

𝑥 𝑘∆ ℎ𝑘∆(𝑡)∆ . (2.30)

As ∆→ 0, the equation can seen graphically in Fig. 2.16.

Therefore,

𝑦 𝑡 =  
−∞

+∞

𝑥 𝜏 ℎ𝜏 𝑡 𝑑𝜏 . (2.31)

and input 𝑥 𝑡 =  −∞

+∞
𝑥 𝜏 𝛿 𝑡 − 𝜏 𝑑𝜏 .
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• If the system is also time-invariant, then

As the same conception of discrete-time system, eq. 

(2.31) can seen as

This result is referred to as the convolution integral or 

superposition integral . We will represent the operation 

of convolution symbolically as

𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ 𝑡 . (2.34)
36

)()(   thth

𝑦 𝑡 =  
−∞

+∞

𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏 . (2.33)
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• A continuous-time LTI system is completely 

characterized by its impulse response h(t).

• The procedure for evaluating the convolution 

integral:

– : Reflecting about the origin and shift 

to the right by t if t >0, or a shift to the left by |t| for t <0

– : y(t) is obtained by integrating the 

resulting product from

)()(   thh

)()(   thx
    to
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Example 2.6
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Example 2.7
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Example 2.7

𝑥 𝑡 =  
1, 0 < 𝑡 < 𝑇
0, otherwise

, ℎ 𝑡 =  
𝑡, 0 < 𝑡 < 2𝑇
0, otherwise

𝑡 < 0, 𝑡 > 3𝑇 → 𝑥 𝜏 ℎ 𝑡 − 𝜏 = 0, → 𝑦 𝑡 = 0

𝑦 𝑡 =  
−∞

∞

𝑥 𝜏 ℎ 𝑡 − 𝜏 d𝜏

0 > 𝑡 < 𝑇 → 𝑦 𝑡 =  
0

𝑡

(𝑡 − 𝜏)d𝜏 = 𝑡𝜏 − 𝜏2  
𝑡

0
= 𝑡 2 −

1

2
𝑡 2 =

1

2
𝑡 2

𝑇 > 𝑡 < 2𝑇 → 𝑦 𝑡 =  
0

𝑇

(𝑡 − 𝜏)d𝜏 = 𝑡𝜏 − 𝜏2  
𝑇

0
= T𝑡 −

1

2
T 2

2𝑇 > 𝑡 < 3𝑇 → 𝑦 𝑡 =  
𝑡−2𝑇

𝑇

(𝑡 − 𝜏)d𝜏 = 𝑡𝜏 − 𝜏2  
𝑇

𝑡 − 2𝑇
= −

1

2
𝑡 2 + 𝑇𝑡 +

3

2
T 2



44



45

Example 2.8
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Example 2.8

𝑥 𝑡 = 𝑒2𝑡𝑢(−𝑡) , h 𝑡 = 𝑢(𝑡 − 3)

𝑦 𝑡 =  
−∞

∞

𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏

𝑡 − 3 ≤ 0 → 𝑦 𝑡 =  
−∞

𝑡−3

𝑒2𝜏𝑑𝜏 =
1

2
𝑒2(𝑡−3)

𝑡 − 3 ≥ 0 → 𝑦 𝑡 =  
−∞

0

𝑒2𝜏𝑑𝜏 =
1

2
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2.3 Properties of LTI Systems

• Convolution sum and convolution integral:

• The properties (characteristics) hold in general only for 

LTI system. The unit impulse response of a nonlinear

system does not completely characterize the behavior of 

the system.
















)()()()()(

][][][][][

thtxdthxty

nhnxknhkxny
k





2.3 Properties of linear time-invariant 

(LTI) systems

2.3.1 The commutative property:

In discrete time

𝑥 𝑛 ∗ ℎ 𝑛 = ℎ 𝑛 ∗ 𝑥 𝑛 =  

𝑘=−∞

+∞

ℎ 𝑘 𝑥 𝑛 − 𝑘 , (2.43)

In continuous time

𝑥 𝑡 ∗ ℎ 𝑡 = ℎ 𝑡 ∗ 𝑥 𝑡 =  
−∞

+∞

ℎ 𝜏 𝑥 𝑡 − 𝜏 d𝜏. (2.44)

48



2.3.2 The distributive property

In discrete time

𝑥 𝑛 ∗ ℎ1 𝑛 + ℎ2 𝑛 = 𝑥 𝑛 ∗ ℎ1 𝑛 + 𝑥 𝑛 ∗ ℎ2 𝑛 , (2.46)

And in continuous time

𝑥 𝑡 ∗ ℎ1 𝑡 + ℎ2 𝑡 = 𝑥 𝑡 ∗ ℎ1 𝑡 + 𝑥 𝑡 ∗ ℎ2 𝑡 . (2.47)
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Example 2.10
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2.3.3 The associative property

In discrete time

𝑥 𝑛 ∗ ℎ1 𝑛 ∗ ℎ2 𝑛 = 𝑥 𝑛 ∗ ℎ1 𝑛 ∗ ℎ2 𝑛 . (2.58)

In continuous time

𝑥 𝑡 ∗ ℎ1 𝑡 ∗ ℎ2 𝑡 = [𝑥 𝑡 ∗ ℎ1 𝑡 ] ∗ ℎ2 𝑡 . (2.59)
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2.3.4 LTI system with and without memory

In particular, a continuous-time LTI system is 

memoryless if h(t)=0 for t≠0, and such a memoryless

LTI system has the form

𝑦 𝑡 = 𝐾𝑥 𝑡 (2.46)

For some constant K and has the impulse response

ℎ 𝑡 = 𝐾𝛿 𝑡 . (2.65)
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2.3.5 Invertibility of LTI systems

The system is invertible only if an inverse system exists 

that, when connected in series with the original system, 

produces an output equal to the input to the first system. 

Furthermore, if an LTI system is invertible, then it has an 

LTI inverse.
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Example 2.11

• An LTI system: y(t)=x(t-t0)                 (2.68)

• Such a system is a delay if t0>0 and is an 
advance if t0<0.

• The impulse response for the system can be 
obtained from eq. (2.68) by taking the input 
to d (t), i.e.

h(t)=d (t-t0), x(t-t0)=x(t)*d (t-t0)

• If we take h1 (t)=d (t+t0), then

h(t)*h1 (t)=d (t-t0)*d (t+t0)=d(t)
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Example 2.12

• Consider an LTI system with impulse response 
h[n]=u[n].

• Using convolution sum

• Since u[n-k]=0 for n-k<0 and 1 for n-k >=0,

• This system is a summer or accumulator that 
computes the running sum of all the values of the 
input up to the present time.







k

nhnxknhkxny ][][][][][





n

k

kxny ][][



• Such system is invertible, and its inverse is

w[n]=y[n]-y[n-1]=x[n], 

(analogy to y[n]=x[n]-x[n-1])

which is simply a first difference operation.

• Choosing x[n]=d[n], we find that the impulse 

response of the inverse system is

h1[n]= d [n]-d [n-1]

h[n]*h1[n] = u[n]*{d[n]-d [n-1]}

= u[n]*d [n]-u[n]*d [n-1]

= u[n]-u[n-1]=d [n]
57



2.3.6 Causality for LTI systems

The output of a causal system depends only on the present 

and past values of the input to the system.

In order for a discrete-time LTI system to be causal, y[n] 

must not depend on x[k] for k>n. For this be true, all of the 

coefficients h[n-k] that multiply values of x[k] for k>n

must be zero. And

ℎ 𝑛 = 0 for 𝑛 < 0 (2.77)
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For a causal discrete-time LTI system, the condition in 

eq. (2.77) implies that the convolution sum representation in 

eq. (2.6) and (2.7) becomes

𝑦 𝑛 =  

𝑘=−∞

𝑛

𝑥 𝑘 ℎ 𝑛 − 𝑘 , (2.78)

And the alternative equivalent form, eq.(2.43), becomes

𝑦 𝑛 =  

𝑘=0

∞

ℎ 𝑘 𝑥 𝑛 − 𝑘 , (2.79)

Similarly, a continuous-time LTI system is causal if

ℎ 𝑡 = 0 for 𝑡 < 0, (2.80)

And in this case the convolution integral is given by

𝑦 𝑡 =  
−∞

𝑡

𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏 =  
0

∞

ℎ 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏. (2.81)
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• The pure time shift impulse with impulse 

response h(t)=d (t-t0) is causal for t0>=0, 

but is noncausal for t0<0

• Causality of an LTI system is equivalent to 

its impulse response being a causal signal.



2.3.7 Stability for LTI systems

A system is stable if every bounded input produces a 

bounded output. Consider an input x[n] that is bounded in 

magnitude: |x[n]|<B, for all n. Then 

𝑦 𝑛 = |  

𝑘=−∞

∞

ℎ 𝑘 𝑥 𝑛 − 𝑘 |,

𝑦 𝑛 ≤  

𝑘=−∞

∞

|ℎ 𝑘 ||𝑥 𝑛 − 𝑘 |,

|𝑦 𝑛 | ≤ 𝐵  

𝑘=−∞

∞

ℎ 𝑘 For all 𝑛. (2.85)

 

𝑘=−∞

∞

ℎ 𝑘 < ∞ (2.86)
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In continuous case,

𝑦 𝑡

= |  
−∞

+∞

ℎ 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏| ≤ 𝐵  
−∞

+∞

ℎ 𝜏 𝑑𝜏

 
−∞

+∞

ℎ 𝜏 𝑑𝜏 < ∞. (2.87)
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Example 2.13

• Consider a system that is 

a pure time shift in either 

continuous time or 

discrete time. 

• Then we conclude that 

both of these systems are 

stable.
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Now consider the accumulator and integrator

• Impulse response functions )()(      ],[][ tuthnunh 

unstable! are systemsboth 

,)(|)(|)( time,continuousin 
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2.3.8 The unit step response of an LTI system

The unit step response, s[n] or s(t), corresponding to 

the output when x[n]=u[n] or x(t)=u(t). Then

𝑠 𝑛 = 𝑢 𝑛 ∗ ℎ 𝑛 .

s[n] is the unit step response of the accumulator.

Therefore, 

𝑠 𝑛 =  

𝑘=−∞

∞

𝑢[𝑛 − 𝑘]ℎ 𝑘 =  

𝑘=−∞

𝑛

ℎ 𝑘 . (2.91)

And       h[n]=s[n]-s[n-1].                    (2.92)

Similarly, in continuous time,

𝑠 𝑡 =  
−∞

𝑡

ℎ 𝜏 𝑑𝜏, (2.93)

And      ℎ 𝑡 =
𝑑𝑠(𝑡)

𝑑𝑡
= 𝑠′ 𝑡 (2.94)
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• s[n] can be seen 

as the response 

to the input h[n] 

with unit step 

response u[n]

• Use the result 

shown in Ex. 

2.12, we can get 

(2.91)
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• In both continuous and discrete time, the 

unit step response can also be used to 

characterize an LTI system.



2.4 Causal LTI systems described by 

differential and difference equations

An extremely important class of both continuous-

time systems and discrete-time systems is that for 

which the input and output are related through a

linear constant-coefficient differential equation.

67

Because it’s too easy, we can study by ourselves 

without discuss on the class.
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2.4.1 Linear constant-coefficient 

differential equations

• Example 2.14

• A general Nth-order linear constant-coefficient 

differential equation is given by

𝑑𝑦(𝑡)

𝑑𝑡
+ 2𝑦 𝑡 = 𝑥(𝑡)

x(t): input

y(t): output

x(t)=Ke3tu(t), where K is a real number

 

𝑘=0

𝑁

𝑎𝑘
𝑑𝑘𝑦(𝑡)

𝑑𝑡𝑘
=  

𝑘=0

𝑀

𝑏𝑘

𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘
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2.4.2 Linear constant-coefficient 

difference equations 

• Nth-order linear constant-coefficient difference 

equation

• To calculate y[n], we need to know y[n-1], …, 

y[n-N]. It’s a recursive equation.
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Example 2.15
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2.4.3 Block diagram representation of 1st 

order systems described by differential and 

difference equations

][]1[][],[]1[][ nbxnaynynbxnayny 

Three basic operations for block diagram 

representation: addition, multiplication by a 

coefficient, and delay (Fig. 2.27)
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][]1[][],[]1[][ nbxnaynynbxnayny 
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Continuous-time system
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• Differentiators are both difficult to implement and 
extremely sensitive to errors and noise

• In this form, our system can be implemented using 
the adder, coefficient multiplier, together with an 
integrator.
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Season pass
• On the first day of college, the dean 

addressed the students, pointing out some of 
the rules: 

"The female dormitory will be out-of-bounds 
for all male students, and the male dormitory 
to the female students. Anybody caught 
breaking this rule will be fined $20 the first 
time. Anybody caught breaking this rule the 
second time will be fined $60. Being caught a 
third time will cost you $180. Are there any 
questions?" 
"How much for a season pass?"



2.5 Singularity functions (usually skip)

In particular, in section 1.4.2 we suggested that a 

continuous-time unit impulse could be viewed as the 

idealization of a pulse that is “short enough” so that its 

shape and duration is of no practical consequence---i.e., 

so that as far as the response of any particular LTI system 

is concerned, all of the area under the pulse can be 

thought of as having been applied instantaneously.

Following the example to show that the signals are in 

essence defined in terms of how they behave under 

convolution with other signals.
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2.5.1 The unit impulse as an idealized short pulse

From the sifting property, eq. (2.27), the unit impulse 

𝛿(𝑡) is the impulse response of the identity system.

That is,

𝑥 𝑡 = 𝑥 𝑡 ∗ 𝛿 𝑡 2.133

For any signal x(t). Let x(t)=𝛿 𝑡 , we have

𝛿 𝑡 = 𝛿 𝑡 ∗ 𝛿 𝑡 (2.134)
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Suppose we think of 𝛿(𝑡) as the limiting from of a 

rectangular pulse. Let 𝛿
∆
(𝑡) correspond to the 

rectangular pulse defined in figure 1.34, and let

𝑟
∆

𝑡 = 𝛿
∆

𝑡 ∗ 𝛿
∆

𝑡 . (2.135)

where r
∆

𝑡 is as sketched in figure 2.33. If we wish to 

interpret 𝛿(𝑡) as the limit as ∆→ 0 of 𝛿
∆
(𝑡), then, by 

virtue of eq. (2.134), the limit as ∆→ 0 for r
∆

𝑡 must 

also be a unit impulse.
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The key words in the preceding paragraph are “behave 

like an impulse,” where, as we have indicated, what we 

mean by this is that the response of an LTI system to all 

of these signals is essentially identical, as long as the 

pulse is “short enough,” i.e., ∆ is “small enough.”
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2.5.2 Defining the unit impulse through 

convolution

We define 𝛿(𝑡) as the signal for which

𝑥 𝑡 = 𝑥 𝑡 ∗ 𝛿 𝑡 (2.138)

For any x(t). If we replace 𝛿 𝑡 by any of these signals, 

then eq. (2.138) is satisfied in the limit. If we let x(t)=1 

for all t, then

1 = x t = x t ∗ 𝛿 𝑡 = 𝛿 𝑡 ∗ x(t)

=  
−∞

+∞

𝜹 𝒕 𝒙 𝒕 − 𝝉 𝒅𝝉 =  
−∞

+∞

𝜹 𝒕 𝒅𝝉.

so that the unit impulse has unit area.
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2.5.3 Unit doublets and other singularity 

functions

The unit impulse is one of a class of signals known as 

singularity functions, each of which can be defined 

operationally in terms of its behavior under convolution. 

Consider

𝑦 𝑡 =
𝑑𝑥(𝑡)

𝑑𝑡
2.143

The unit impulse response of this system is the derivative 

of the unit impulse, which is called the unit doublet u1(t). 

We have
𝑑𝑥(𝑡)

𝑑𝑡
= 𝑥 𝑡 ∗ 𝑢1 𝑡 (2.144)
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Thereby,
𝑑2𝑥(𝑡)

𝑑𝑡2
= 𝑥 𝑡 ∗ 𝑢2 𝑡 . (2.145)

From eq. (2.144), we see that 

𝑑2𝑥(𝑡)

𝑑𝑡2
=

𝑑

𝑑𝑡

𝑑𝑥(𝑡)

𝑑𝑡
= 𝑥 𝑡 ∗ 𝑢1 𝑡 ∗ 𝑢1 𝑡 . (2.146)

and therefore,

𝑢2 𝑡 = 𝑢1 𝑡 ∗ 𝑢1 𝑡 . (2.147)

In general, uk(t), k>0, we have

𝑢𝑘 𝑡 = 𝑢1 ∗ ⋯ ∗ 𝑢1(𝑡) 2.148

k times
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In the other way round, by the complex equation’s 

deduction we’re not glad to see, we got the 

conclusion:

𝑢 − 𝑘 𝑡 = 𝑢 ∗ ⋯∗ 𝑢 𝑡
k times

=  
−∞

𝑡

𝑢 𝜏 𝑑𝜏. (2.157)

To use an alternative notation for 𝛿(𝑡) and u(t), 

namely,

𝛿(𝑡)=u0(t)                     (2.159)

u(t)=u-1(t).                    (2.160)

Then,          u(t)*u1(t)=𝛿(𝑡)

u-1(t)*u1(t)=u0(t)           (2.161)

uk(t)*ur(t)=uk+r(t).         (2.162) 86



2.6 summary

Through the chapter, we have learned about:

• Convolution integral

• Causality and Stability

• Linear constant-coefficient differential and 

difference equations

• Singularity functions
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