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Signals and Systems

Chapter 3

Fourier Series for Periodic Signals

Instructor: Dr. Hsuan T. Chang

Department of Electrical Engineering
Yunlin University of Science and Technology

Introduction

» We explore an alternative representation (complex
exponential) for signals and LTI systems.

 This chapter focuses on the representation of
continuous-time and discrete-time signals referred
to as the Fourier series.

« If the inputto an LTI system is expressed as a
linear combination of periodic complex
exponentials or sinusoids, the output can also be
expressed in this form, with coefficients that are
related in a straightforward way to those of the
input.
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3.2 The Response of LTI Systems to
Complex Exponentials

» The response of an LTI system to a complex
exponential input is the same complex exponential
with a change in amplitude:

continuous time :est —» H(s)e"t
discrete time: z™ —» H(z)z"

H(s) is the system’s eigenvalue.
est  is the system’s eigenfunction.

« Continuous-time LTI system case:

x(1) —— ht)y  |— w0

We consider x(t)=e*,

then y(t)=x(t)*h(t)
=f_+;° h(D)x(t — t)dt
:fj;o h(t)estDdr
=St fjozo h(t)e S%dr

=H(s)et where H(s)= fj;o h(t)e S'dt
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 Discrete-time LTI system case:

xn)|—— hn| — [n]

We consider x[n]=z",
then y[n]=x[n]*h[n]
=55 o hlklx[n — k]
=Yoo h[k] 27K
=z" Y% _ h[k]z7F
=H[z] - z"
where H[z] = Y5 _, h[k]z7*

 Eigenfuction & Eigenvalue:

estis an eigenfunction, H(s) is the corresponding eigenvalue
z" is an eigenfunction, H[z] is the corresponding eigenvalue

* Linear Combination:

If x(t) = aesit + a,es:t + aze’st
a,esit - a,H(s,)e"
a,es:t - a,H(s,)es:"
aeSst —» azH(s;)esst

then y(t) = a;H(s))e%it + a,H(s,)e’" + aH(s3)esst

6
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Specifically:

Table of the LTI system’s linear combination

.

cT x(t)= z aest () = z a,H(s;)est

k k
DT x[n] = Z a,z,"  y[n]= Z aH(zp)z,"
k k
Example 3.1
y(t) = x(t — 3), x(t) = e’?t, s

=j2
y(t) — ej2(t—3) — e—j6ej2t — H(jz)eth

Another way to find H(s)

h(t) = 8(t — 3)
H(s) = f S(t—3)e STdr=e 35 = H(s) = e J®
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X(t) = COs(4t) + cos(7t) = ~ e 4 L g1t Loin L oon

y(t) = cos[4(t —3)]+cos[7(t —3)]

zle—jlzeﬂt +1ej12e—j4t _}_le—jZlej?t _I_lej21e—j7t
2 2 2 2

e 5s=j4, H(jb) :%ej12
e " 5s=—j4, H(—j4):%ej12

el 5s=j7,  H(j7) :%ej21

e’ 5s=—j7, H(-j7) :%ej21

3.3 Fourier Series Representation of
Continuous-time Periodic Signals

» Harmonically related complex exponentials:
. (2T — -
0, (t) = e/koot = e]k(T )t, k=0+1,7F2,....
fundamental frequency: w,
fundamental period: T = 2m/w,

* Linear Combination of harmonically related
complex exponentials:
+o00

+oo 5
) (2T
x(t) = Z akefkwot = z ake]k( T )t
k=—o0 k=—0o0

=> is also periodic with period T.

10



Example 3.2

- 1
x(t) = Z ape’®?m™  whereay, =1,a;, = a_; = 7

— 1+1(ej27'[t+e—j27'[t)+l(ej4ﬂt+e—j4ﬂt)+%(ej6ﬂ't
4 2
+ e—j67’[t)

1 2
=1 +§c052nt+cos4rrt+§cos6nt

11
Xoft) =1
T t
x(t) = 1 cos 2wt Xolt) + xq (t)
Xolt) = cos 4mt Xolt) + x1(0) + x,(t)
3 t
xalt) = & cos 6t X() = Xoft) + x38) +x5(t) + X4(t)
|
t - t
12

Figure 3.4  Construction of the signal x{t) in Example 3.2 as a linear com-
bination of harmonically related sinusoidal signals.

2023/4/23
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 Suppose that x(t) is a real periodic signal, then x*(t)=x(t)
x(t) = TfZ oo a e 0t
x*(t) = YF2 o, a, e Tkt (replace k by -K)
— Zloco:_oo a_k*ejkwot
S>a =aq,=>aq, =a_
 X(t) can be e>§opressed in another form:

x(t) = a,+ Z[akejkw‘)t +a_ge Tkt (a_, =a,)
k=1

[ee]
= qa, + Z [ake]kwot + ak*e—]kwot]
k=1

[ee]
k=1

* a, is expressed in polar form:
a, = A,e%

=>x(t) =a,+ Z 2Re{A el koot 6,0}

k=1_
=a,+2 Z Aicos(kwyt + 6,)
k=1

* a, is expressed in rectangular form:
a =By +jC,

=>x(t) =a,+2 Z [Bycos kwyt — Cpsin kw,t]
k=1
e Ifay'sareallreal, ay = Ay = By, C, = 0,0, =0

x(t) =a¢+2 By cos kwyt
14

k=1
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3.3.2 Determination of the Fourier series representation of a
continuous-time periodic signal

« Multiplying both sides of x(t) = X}, a,e/*@t by e /@t
+ 00

=> x(t)e—]n(uot — z ake]kwote—]n(uot

k=—o0

Integrating both sides from 0 to T = 27/,,_

T I%
z ake]kwote—]nwotdt

k=—o0

T
=>J x(t)e Tnwotdt =
0 0

i T
= Z ak-f el (k=mwot gt
0

k=—o0

+ Ifk=n, [ e/0mantd= [F1de=T

If k = n,
T j(k-m)w,t _27
Iy e UmmDtdt, W=

_ 1 ej(k—n)wotl’(l)'

T jk-nw,
1 jk—n)w,T_ ,07 — —
](k—n)wo[ € ] 0
. pik=M)@T_ 50
= cos[(k — n)2x]+jsin [(k — n)2n]-1
=1+0-1
=0

16
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T
— jk—mwgt J¢ — T,k=n
>f0 x(t)e dt {O’kin

we can find: fOTx(t)e‘f”‘”otdt =a, T
1 (T .
=>q, = —f x(t)e @t dt
T 0

 For any interval of length T, we’ll obtain the same
result:

1 .
a, = —Jx(t)e‘fn“’otdt
T Jr

17

Definition 3.1 Fourier Series

for a continuous and periodic signal x(t) = x(t+T)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

; } _1 — Jkant _1 — K7t 441
analysis: 3ak—;!><(t)e dt—?jx(t)e dt}

e J

L is the integration from t; to t,+T and t, can be any value

Specially, if t,= 0,

|

. |
analysis: la, =

|

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

P.216



T

analysis: _1 kot gy _ L k(e
y EE ! X(e M dt = j x(t)e dt

{a,} are often called the Fourier series coefficients or the
spectral coefficients of x(t).

Specially, when k=0,
1
= x(t)dt
8= j (®)

P.216

Supplement: Alternative Forms of the Fourier Series

J'W SyntheS|s X(t) = z akejzzrk fot
Ko

L, analysis: & :%J‘X(t)e?n”kfotdt where fO = 1/T.
T

r synthesis:  x(t) = \/% i ake—jkwot
T K=o
L

— analysis: a, :\/gj' X(t)ejk‘u“tdt
T

2023/4/23
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Examples 3.3

: 1
x(t) = sinwy t = — e/Wol — —g~jwot
2j
1 1
1_2_]" 12_21' a, =0, for k
#+4+1or —1

It is easier to expand the sinusoidal signal as a linear
combination of complex exponentials and identify
the Fourier series coefficients by inspection.

22

Examples 3.4
x(t) =1+ sinwgt + 2 coswy t + cos( 2wyt + %)

- 2i oot — ¢ IWoE] 4 [ ot 4 ¢=IW0E] 42 [ (BWOLH/4) 4 g=SCEwot /)]
' 2

=1+(1+ %)ejwot +(1- %)e_jwot + (%ej(ﬂ/@)ejZWot + (%e—j(n/z;))e—jz%t
J J

ay=1
ca+ayoq1 L _q L
al_( 2])_ 2]' a—l_( 2])
—1+1'
= 2]' \/—
1. 2
azzzel(n/‘l‘):T(l_l_j)‘
1 N
ay=5e D =221 ),

ay =0 for |k| > 2.
23

11
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Figure 3.5 Plots of the magnitude and phase of the Fourier coefficients of
the signal considered in Example 3.4.

Examples 3.5

Figure 3.6 Periodic square wave.

| |
I-n 5 I
2 2

_) L [t <Ty
*®O =10 T, <|t|<T/2’
periodic with fundamental period T.

25

12



 Because x(t) is symmetry about t=0, it is
convenient to choose  -T/z<t<T/2 as the
interval over which the integration is performed.

 First, k=0 _1/™ _2%

0 — T -7 T
. k+0 T o
For a4y = lf 1e_jkw0tdt = —- e Jkwot
T -1 ]kWOT -1
3 2 [ejkWOTl — e_jkWOTl _ sin( kWOTl)
_ sin( kwoTy) N
=T, k%0 Sx
i

26

L.

x 1 ] I
' I I |72 0 2
@ The coefficients are plotted for
a fixed value of T, and several

II values of T.
l 11

T rreiite
all K

VST lll
] Lo
(

0
b)

N JII”|'“IIH
8 0

g ITITY ' k
(c}

Figure 3.7 Plots of the scdled Fourier series cogfficients Tz, for the pe-

riodic square wave with 7 fixed and for several values of 7: (a) T = 4T;;

(b) T = 8Ty; (¢) T = 16T. The coefficients are regularly spaced samples of

the envelope (2sin Ty)/w, where the spacing between samples, 27/7, de- 27
creases as T increases.

2023/4/23
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3.4 Convergence of the Fourier Series

Examine the problem of approximating a given periodic signal x(t) by a linear

combination of a finite number of harmonically related complex exponentials.
N

xy(t) = Z a, ekt (3.47)
k=—N
Let ey (t) denote the approximation error; that is,
+N
en(t) = x(8) — xN(£) = x(t) — Z aeiket (3.48)
k=—N

In order to determine how good any particular approximation is, we need to
specify a quantitative measure of the size of the approximation error. The
criterion that we will use is the energy in the error over one period:

EN:L ley(t)|?dt. (3.49)

As shown in Problem 3.66, the particular choice for the coefficients in eq.
(3.47) that minimize the energy in the error is (the same as Eq. (3.39))

1 .
a, = Tf x(t)e Tk@otdt. (3.50)
T

 The best approximation using only a finite
number of harmonically related complex
exponentials is obtained by truncating the
Fourier series to the desired number of
terms.

» As N increases, new terms are added and E,,
decreases. If x(t) has a Fourier series
representation, then the limit of E, as N> oo
IS zero.

29
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 Not any periodic signal has a Fourier series
representation.

« What kind of signal can be represented by Fourier
series:

1. A signal has finite energy over a period

Jp lx@®)2dt < o0 (3.51)

When this condition is satisfied, we are guaranteed
that a, obtained from (3.39) are finite.

30

An alternative set of conditions guarantees that x(t) equals its
Fourier series representation, except at isolated values of t for
which x(t) is discontinuous. =» Dirichlet conditions

« Dirichlet conditions:

» Condition 1: x(t) must be absolutely integrable over any
period.

Jp 1x(@®)]dt < oo, then a, < o

» Condition 2: In any finite interval of time, x(t) is of
bounded variation; that is, there are no more than a
finite number of maxima and minima during any single
period of the signal.

» Condition 3: In any finite interval of time, there are a
finite number of discontinuities. Furthermore, each of
these discontinuities is finite. a1

15



Ak
This signal violates
: the condition |
: | x(t) = = for O<t<=1
o 0 1 %

t

This signal violates

the condition 2

This signal violates
the condition 8

o ‘_l x(t) = sin(zTn)

Figure 3.8 Signals hat violats the
Dirichlet conditions: (a) the sigral

xit) = Utford ==t = 1, aper

o sipnal with pariod 1 {ths signal
vialates the first Dirichlet condition);
i) the perodic signal of eq. {3.57),
which violates the second Dirichlet
condition; (£} a sigmal periodic with
pariod 8 that wiolates the third Dirichiat

L.

Tz

condition [lor 0 = f < B, the value af
x{t) decreases by a factor of 2 when-
ever the distancs from f to 8
decreases by a Taclor of 2; that is,

Ty At =1, 0= =4, 4l = 12,
4t oxf) =14, 6= t<7,
N{f) = 1/B, 7 = =75 atc]

Gibbs phenomenon: the truncated Fourier series approximation xy(t)
of a discontinuous signal x(t) will in general exhibit high-frequency
ripples and overshoot x(t) near the discontinuities.

xn(t) Xl .

LN\
\ N=1 / N=3
T, 0 T N NS -1 T,
(@) ()
XN Xnlt)
O\ O\ N AN
7 A4 vV vV
N=7 N=18
T, T\ A -1, T‘Vh"
© (d

xn(t)
N=79
T, 0 T
(e

ure 3.9 Convergence of the Fourier series representation of a square
ie: an illustration of the Gibbs phenomenon. Here, we have depicted the
¢ series approximation xy(t) = Z,'(’:‘N aeen! for several values of N.

33
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3.5 Properties of Continuous-Time Fourier Series

3.5.1 Linearity
« 1. Linearity:
if

F.S.
x(t) = a,

F.S.
y(t) < b,
then

F.S.
z(t) = Ax(t) + By(t) <>, = Aak + Bbk

34

3.5.2 Time Shifting & 3.5.3 Time Reversal

« 2. Time Shifting:

] F.S.
if x(t) & a,

then
FS. ket —jk(2m/T)t
x(t —t,) > e /®tq, =™/ o,
e 3. Time Reversal;

) F.S.
if x(t) < a,

then

F.S.
x(—t)—a_y

35

2023/4/23
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3.5.4 Time Scaling & 3.5.5 Multiplication
« 4. Time Scaling:

if
+00 +00
x(t)= Z akejkwot: Z akejk(Zn/T)t
k:—oo k=—00
then
+00
x(at) — Z akejk(awo)t
k=—o0

5. Multiplication:

. F.S. F.S.
it x()—a y(t) & by
then

F.S.
x(Dy@t) = h, = X2 abyy 36

3.5.6 Conjugation and Conjugate Symmetry

« 6. Conjugation & Conjugate Symmetry:
*conjugation:
. F.S.
if x(t) & a,
then  x"(¢) Sa "k
*conjugate symmetry:
if x(t) real, that is x(t)=x"(t)
then a_p=a",

*if x(t) real and even, then a, real and even.
*If x(t) real and odd, then a,, purely imaginary and odd.

37

18
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3.5.7 Parseval’s Relation for Continuous-
Time Periodic Signals

o ~fo lx(@®)Pdt = TP, |ay|2

Average power in one period of x(t)

Note that:

1 = . o 1
—f Z a,elk@ot| 24t = Z —J- la,|?- 1dt =
T T k=—oc0 k:—ooT T

[oe]

Z |ak|2

k=—o00

*The total average power in a periodic signal equals the sum of
the average powers in all of its harmonic components.

38
TABLE 3.1 PROPERTIES OF CONTINUOUS-TIME FOURIER SERIES
Property Section  Periodic Signal Fourier Series Coefficients
x(t) | Periodic with period T and a;
¥(r) | fundamental frequency wy = 2/T by
Linearity 351 Ax(1) + By(1) Aay + Bb,
Time Shifting 352 x(t = 19) age~ Tt = g, gmIk2mTi
Frequency Shifting giMeot = @IMQTIDN y(p) Aoy
Conjugation 3.5.6 x(t) a’,
Time Reversal 353 x(—1) a_y
Time Scaling 354 x(eet), @ > 0 (periodic with period T/a) ai
Periodic Convolution f x(T)y(t — T)dT Tayby
T
Multiplication 355 x()y(@) > abiey
I=-
. o dx(t) . 2
Differentiation v Jkwoa, = jk?ﬂ—ak
. ! finite valued and 1 1
Integration J t dz( - =\
O eriodic only if ap = 0) ko ) = \ Gk )
a =a’,
QRefai} = Gefa_}
Conjugal; Symmetry for 356 x(t) real Imia,} = —9Imfa-,}
Real Signals x| = la_il
Ya, = —¥a-;
Real and Even Signals 3.5.6 x(t) real and even a, real and even
Real and Odd Signals 356 x(1) real and odd a, purely imaginary and odd
Even-Odd I?ecomposilicn [x,(t) = 8v{x(r)} [x(t) real] Refar}
of Real Signals Xo(1) = Od{x(t)} [x(t) real] Jjomiai}
Parseval’s Relation for Periodic Signals
39

%

1 2 — 2
TL xOPdr = > lai

k==

19
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Example 3.6

Example 3.6

Consider the signal g(f) with a fundamental period of 4, shown in Figure 3.10. W
could determine the Fourier series representation of g(¢) directly from the analysis equ#
tion (3.39). Instead, we will use the relationship of g(7) to the symmetric periodic squmj
wave x(f) in Example 3.5. Referring to that example, we see that, with T = 4a|!ﬂl
T] = 1.

gt = x(t—1)—1/2. (3.69*

a()

N-

Nl

Figure 3.10 Periodic signal for Example 3.6.

40
g(t) with T = 4 as shown in Fig. 3.10
-gt)=x(t—1)—-1/2
- by =ay e Jkn/2
0, fork #0
= 1
~ Gk —5 fork=0
a, e Jkm/2, fork #0
- dk = 1
ap—=, fork=0
2
sin(mk /2 .
->dg = m(Zn/ )e—Jkn/z’ fork #0
0, fork=0 41

20
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N-

N-

Figure 3.10 Periodic signal for Example 3.6.

The time-shift property in Table 3.1 indicates that, if the Fourier Series coefficients of
x(7) are denoted by a,. the Fourier coefficients of x(z — 1) may be expressed as

by = axe K72, (3.70)
The Fourier coefficients of the dc offser in g(1)—i.e., the term — 1/2 on the right-hand
side of eq. (3.69)—are given by

0, for £ >= O
= ,5' for kK = O~ (285,

Applying the linearity property in Table 3.1, we conclude that the coefficients for g(r)

may be expressed as

ag — = 0"

o ape—Ikmi2, for kK = O
R, . for k&

where each a; may now be replaced by the corresponding expression from eqgs. (3.45)
and (3.46), yielding

ko 3:72)

sin(w &/2) o —jhw/2 for £ = O
dy { > .
0O, for kK = O

42

Example 3.7

Consider the triangular wave signal x(¢) with period 7 = 4 and fundamental frequency
wo = /2 shown in Figure 3.11. The derivative of this signal is the signal g(¢) in Exam-

x(t)

T
=2 2 t

Figure 3.11 Triangular wave signal in Example 3.7.

43

2023/4/23
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Example 3.8

Example 3.7

[
x(t) withT = 4 and w, = >

as shown in Fig. 3.11

T
- d, = jk 5 €k

. (T
~ 2d, ~ 2sin ) _jkn
ko j(km)?

- ey e 2, k#0

1
- Fork =0,eq ==
2 44

Let us examig Jroperties of the Fourier series representation of a periodic train
‘This signal 1d its representation in terms of complex e
1t role when we discuss the topic of sampling in Chapter
n with period 7" may be expressed as

impulses, ¢

nentials wi
The impulse tr

x(r) - 1€ 2 kT ): 3.7

i

it is illust

ted in Figure 3.12(a). To determine the Fou fies coefficients a,, we
(3.39) and select the interval of integration to be T/2 = r = T/2, avoiding
placement of impulses at satico.l —= — - i the same
S(r), ‘L““‘ it followsghat

ec

1 i >
cay 7 ‘ /,-.'8(”" iR w T oty 7"

In other words, all the Fourier senies coethcients of the impulse train are ident
1 valued 1wd even (with respect to the index £). This is o
expected, since, according to Table 3.1, any real and even signal (such as our imj
train) should have real and even Fourier coefficients.

The impulse train also has a straightforward relationship to square-wave si
such as g(r) in Figure 3.6, which we repeat in Figure 3.12(b). The derivative of g(f)
the signal g(7) illustrated in Figure 3.12(c). W — iy ( 1) 015 the difference
two shifted versions of the impulse train x(z). That is,

coefficients e also re

q(r) x(2 + T) x(r - o'l 2 G

Using the properties of Fourier series. we can now compute the Fourier series ©
;(7) without any further direct evaluation of the Fourier series anal
»m the time-shift nd lincarity properties, we sce from eq. (3.
series_c raay be expressed in terms of the Fo

cients of g(r) and
cequation. Firseg, f
that the Fourie

Py Jhaogy
by e v ay e Ty ay.

2023/4/23
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Example 3.8

/[
x(t) withT = 4 and w, = - as shown in Fig. 3.12

Sox(t) = z 5(t — KT)

k=—o0

1 g _jk2mt 1
= — T = — -
- Tj_gc?(t)e dt 7

= q(t) =x(t+Ty) —x(t—Ty)

46

- bk —_ e]kaTlak —_ e_]kaTlak

Wy = Z?H — by, = 2jsin(kw,Ty)a,=2jsin(kwyTy)IT

by = jkwocy

by  2jsin(kwoT;)  sin(kwoTy) .

= = #0
Jjkwg JjkwoT km

—)Ck

47

23
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()

@)

am

aw

= i 1
l Tz T, l . T2 T l t

©

Figure 3.12 (a) Periodic train of lmpulses (b) periodic square wave;
(c) derivative of the periodic square wave in (b

where wo = 27/7. Using e€q. (3.76). we then have

R ke JAwoT _ 2jsinCkwo”y)
by = _,,[l. e 1] = =t

Finally. since_g(1) is the derivative of e(7). we can use the differentiation property in
Table 3.1 to Write

by = jkwock. (3.78)
—

where the ¢ are the Fourier series coeffi

s of g(r). Thus.
bi  _ 2jsintkwoT) _ sinCkwoT)

cx =
—

: . 3
TEwn Fkarod o 2 a0 12

Example 3.9

Suppose we are given the following facts about a signal x(7):

1. x(2) is a real signal. ﬁ
2. x(1) is periodic with period 77 = 4, and it has Fourier series coefficients a;.|
3. ax = Ofor |k| = 1.

4. The signal with Fourier coefficients b, = ¢ /7*24 , is odd.

5. L[ lxOPdr = 1/2.

Let us show that this infi

n is sufficient to determine the signal x(7) to within
sign factor. According tc (7) has at most three nonzero Fourier series coefficients
ay: ag, ay, and a . Then, since x(7) has fundamental frequency wo = 27/4 = 7/2,
follows that Fact 2

o
x(2) = ag + a1el™ 2 + a_je I72,

Since x(r) is real

. we can use the symmetry properties in Table 3.1 to conclude
that ag is real and «

a* . Consequently,

x(2) = ao + are’™? 4 (ae?™2)" = ap + 2Ref{ay e/ 2} (3.81)

<t us now determine the signal corresponding to the Fourier coefficients b, g-nvq
in @ Using the time-reversal property from Table 3.1, we note that @ ; correspoi
to the signal x(—7). Also, the time-shift property in the table indicates that multiplicati
of the kth Fourier coefficient by ¢ /472 — ¢ /kvo corresponds to the underlying si
being shifted by 1 to the right (i.e., having 7 replaced by 7 — 1). We conclude that
~ ients b; correspond to the signal x(—( — 1)) = x(—7 -+ 1), which, according to
@ must be odd. Since x(7) is real, x(—z + 1) must also be real. From Table 3.1,
it then follows that the Fourier coefﬁCIents of x(—z + 1) must be purely imaginary i
odd. Thus, by =— Oand b, = —b,.Si e-reversal and time-shift operations
change the average power per penodholds even if x(7) is replaced by x(—7 + 1).
That is,

lj [xC—s+ DDfids = 1/2. @
2,

24



2023/4/23

Example 3.9 —p2

We can now use Parseval’s relation to conclude that
bi|* + |b_]* = 122 (3.83)
Substituting by = —b_, in this equation, we obtain |b;| = 1/2. Since b, is also known
to be purely imaginary, it must be either j/2 or — j/2.

Now we can translate these conditions on by and b, into equivalent statements on
ap and a,. First, since by = ().imp]ie,\ that ay = 0. With k = 1, this condition

implies that a; = e "2p_, = =jb_; = jb;. Thus, if we take b; = j/2, then a; =
—1/2, and therefore, from eq. (3.81), x(r) = — cos(7rt/2). Alternatively, if we take b; =
— j/2, then a; = 1/2, and therefore, x(f) = cos(1/2).

50

Example 3.9

Fact 2: Fundamental Frequency: wy=27z/4=r/2
jmt jmt

Fact3: x(t) =ay+a,e 2 +a_je 2

jmt
Fact1: a;=a+*_,,a; = a_; = x(t) = ap + 2Re {ale 2 }
Fact 4:

using odd signal, time reversal, and time shifting
properties, b, is corresponding to the signal

X(-(t-1))=x(-t+1)
Since x(t) is real, X(-t+1) must also be real and its Fourier
series also be purely imaginary and odd.
b,=0, b,=-b_,=>» purely imaginary

51
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Fact 5 1j| ( t+1)|2dt—1
dacC . 4 4.X = >

Use Parseval’s relation

> (b1|? + |b_y|? =, 2| by 112,

=> b,=j/2 or —j/2

=>determine a,, a,, a_, using Factor 4
=>»Determine x(t) using Eq.(3.81)

52

b,=j/2, b= —j/2.
e a,=e 2bh =-jb =1/

x(t) = 2Re {ale%} = —cos(mt/2)

blz'jlz, b_1: J/Z,
a,=ezb_ =jb_ =1/

jmt

x(t) = 2Re {aleT} = cos(mt/2)

53

2023/4/23

26



2023/4/23

3.6 Fourier Series Representation of
Discrete-Time Periodic Signals

» The Fourier series representation of a discrete-
time periodic signal is a finite series, as
opposed to the infinite series representation
required for continuous-time signals.

- EEREGERNBURERIR NEREZSR
A - HRA - BB E R B I ERE
TNEA RIBE

54

3.6.1 Linear Combinations of Harmonically
Related Complex Exponentials

A discrete-time signal is periodic with period N

x[n] = x[n + N] (3.84)
« Fundamental frequency:
w, = 2n/N

» The set of all discrete-time complex exponential
signals with period N

@, [n] = efk@ = ef"(zﬁn)",k =0,+1,42, ... (3.85)
Do[n] = Oy[n]
@i[n] = Oyy1ln] = O, [n] = Oyirnn] (3.86)

55
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» More general periodic sequences: linear combination
of the sequence g[n].

x[n] = Z ar pr[n] = Z ay efkeon = Z ay eJk@Em/Nn

k k k

« Since @¢[n] are distinct only over a range of N
successive values of k, the summation need only
includes terms over this range: k=<N>

x[n] = Z ar prn] = Z ay efkoon = Z ay eJkEmT/Nn

k=<N> k=<N> k=<N>

56

3.6.2 Determination of the Fourier Series
Representation of a Periodic Signal

» The discrete-time Fourier series representation
of a periodic signal:

= Y apnl= Y qen= Y gl .

k=<N> k=<N> k=<N>
k=0,1,..., N-1
k=3,4,..., N+2

Multiply both sides by e~"®"/™"
and summing over N times

Z x[n]e_jr(%n)"= Z Z akej(k—r)(%”)n (3.91)

n=<N> n=<N>k=<N>
. 2
LI (F)n (3.92)

« How to determine a,?

- Y .

k=<N> =<N>
n 57

2023/4/23
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® Yn=<n> ej(k—r)(%”)n

= gz—& e —Jj(k-1) (Zﬁn)n

1—[e_j(k_r)(2Wn)"]N 1—[e~J(k-m)2mny
e &) i)
1-1

= :O

1—e_j(k_r)(2Wn)

58

3.6.2 Determination of the Fourier Series
Representation of a Periodic Signal

« Note that:
2 _
Z e]k(Wn)n _ N, k=0, iN,iZN,
0, otherwise (3.90)
n=<N>

then we choose k=r

()
=Xn=<n>X[n]e TA\N/T = Na,
1 —ir(2\n

—=a, = NZn:<N> x[n]e™ (%) (3.95)
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3.6.2 Determination of the Fourier Series
Representation of a Periodic Signal

« |If we take k: 0—N-1

=>x[n] = ay@o[n] + a;0,[n] + -+ ay_1Dy_1[n]
if we take k:1—N

=>x[n] = a,0,[n] + a,0,[n] + -+ ayDy[n] (3.96)
but, as we know: @,[n] = @[N] (3.97)
therefore: a,=ay

» We conclude that
H=AN
that is, a, is periodic with period N (3.98)

60

3.6.2 Determination of the Fourier Series
Representation of a Periodic Signal

« Summary for the DTFS:

— Jkwon — jk(2m/N)n
x[n] Z ay el*®o Z aye (3.94)

k=<N> k=<N>

Z x[n]e‘jk“’o"=% z x[n]e_jk(%n)n

n=<N> n=<N>

(3.95)
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Example 3.10
Consider the signal
x[n] = sinwgh, (3.99)

which is the discrete-time counterpart of the signal x(f) = sinwyt of Example 3.3. x[n]
is periodic only if 27r/wy is an integer or a ratio of integers. For the case when 27/wg i$
an integer N, that is, when

wy = —

N
x[n] is periodic with fundamental period N, and we obtain a result that is exactly analo-

gous to the continuous-time case. Expanding the signal as a sum of two complex expo-
nentials, we get

x[n] = Elfej(mmn _ zije—j(zmmnv (3100)

Comparing eq. (3.100) with eq. (3.94), we see by inspection that

=2 =L (3.101)

W33 xfu] = sin(2n/5)n AT BRI

63
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Fourier Series Representation of Discrete-Time Periodic Signals 215

and the remaining coefficients over the interval of summation are zero. As described
previously, these coefficients repeat with period NV: thus, ay 1 is also equal to (1/2 ) and
ay -1 equals (—1/2j). The Fourier series coefficients for this example with NV 5 are
illustrated in Figure 3.13. The fact that they repeat periodically is indicated. However.
only one period is utilized in the synthesis equation (3.94)

o,
1

Figure 3.13 Fourier coefficients for x[n] sin(27/5)n.

Consider now the case when 277/wg is a ratio of integers—that is, when
27 M
N

@y

ctors, x[#] has a fundamental period

ring that A and N do not have any common f
x[72] as a sum of two complex exponentials, we have

Ass
of N. Again expanding

1 o
x[r] L intminm

(1/2)). a ar ( 1/2 j), and the

from which we can determine by inspection that aa,
period of length N are zero. The Fourier coefficients

n, we have

remaining coefficients over one
nple with A 3 and N 5 are depicted in Figure 3.14. Ag
nple. for N 5. ax a 3. which

th 5 there are

for this e
indicated the periodicity of the cocfficients. For ex:
in our example equals (— 1/2 ). Note, however, that over any period of leng
only two nonzero Fourier coefficients, and therefore there are only two nonzero terms in

the synthesis equation

|

8
I 7-6-6 a2 5 e I 8 © 1011 | 13 K
ure 3.14  Fourier coefficients for x[s] sin 3(27/5)n

Example 3.10

The signal - x[n] = sinwyn

21
Wo = —

64

65
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Example 3.11

—1+si 2m +3 2m N 4 + T
x[n] = sin( N)n cos( N)n cos( N 2)
—1+si 2 +3 2 . Am
= sin( N mn cos( N n — sin( N mn

1 .2_nn - .2_1rn 3 .2_n:n - .2_n:n 1 '4—nn - '4—"n
=1+2—j(e]N —e N )+E(61N +e W )—?(eJN —e VY

3 1 2T 3 1 2T 1 Am 1 AT
=1+G+)e/ VN + (—)e ' W' ——e/ W' + —eT/W"
Gtgpe G=2¢ 2 ¢ 2 ¢
a0=1=aN=a2N=a3N= .....
3 1 3 1
a; = (E + Z) = dyy1 = doN+1 = A3N+1 =-on a_, = (E - Z) =ay-1
=dazy-1 = A3n-1 =
1
az = _2_]. = an+2 = AoN42 = A3N42 -0 a; = Z =dan-2

=dazN-2 = A3zn—2 = ..

66
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Example 3.12 - The discrete-time periodic square wave

2023/4/23

ven
n

-N -N; 0 N,

Figure 3.16 Discrete-time periodic square wave.

x[n]=1 for —N;<n<N;

Ny
1 . 1 .
ay = N z x[n]e—jk(ZH/N)n — N Z e—]k(Zn/N)n
n=<N> n=-Np
Let m=mn+ N,
1 2N, 1 2Ny
a =~ z e IKER/MMN) I/ ON, Z e—Jk@n/Nym
m=0 1 m=0 (3.104)
1 sin[ 2k (N; +7)/N] See next page
—_ for kth,-l_-N,-i_-ZN, details!

"N sin(wk/N)

2N, +1
ax =1T' for k=0,+N,%2N,... ‘

68

) 2N,
_ _ pJk(2m/N)N; Z o—Jk(2n/Nym
N

m=0
1— e—jk(Zn/N)(2N1+1)

1 — e—jk(m/N)
1 eJk@I/NINy _ p-jk(2m/N)(Ny+1)

ag

_ L ikermom,

N 1 — e Jk(2n/N)
1 eIk @m/2N) [oIk@R/N)Ny _ g=jk(@n/N)(Ny+1)]

N Ik ZRZN) _ g—jk(zm/ZN)

for

1 IKC@R/NW1+3) _ ,=jk@m/N)Ni+3) 1 2j sin[ 2k (Ny + %) /N]

N eJk@2m/2N) _ o—jk(2m/2N) - N 2j sin(mk/N)

1 sin[ 2k (N4 +%)/N]

- for k # 0,+N, +2N, ...
N~ sin(mk/N) oric#0,%

)

69

34



2023/4/23

LA

gl il il

(o)

ARANN

0 K

n
T
(@

11 1 P et il
8 -4 0 4 g i

------------
k

(©

Figure 3.17  Fourier series coefficients for the periodic square wave of Ex-
?n;p/\l/e 31420 plots of Na, for 24, +1 = 5 and (@ N = 10;q(b) N = 20; and 0
o o ;

Comparison with continuous-time
Fourier series

There are no convergence issues and
there is no Gibbs phenomenon with the
discrete-time Fourier series.

Any discrete-time periodic sequence x[n]
is completely specified by a finite number
N of parameters.

The Fourier series analysis simply
transform this set of N parameters into
an equivalent set — the values of the N
Fourier series coefficients.
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3.7 Properties of Discrete-Time Fourier Series

1. Multiplication:
if

F.S.
x[n] & a,

F.S.
y[n] < b,

then

F.S.
xalyll] Sdo= ) abey
l=<N> (3.108)

A periodic convolution between the two periodic
sequences of Fourier coefficients.

72

3.7.2 First Difference & 3.7.3 Parseval’s Relation for
Discrete-Time Periodic Signals

« 2. First Difference:
if

F.S.
x[n] < aq,

then

. 27

S.
x[n] —x[n —1] P (1 — e_Jk(W))ak (3.109)
e 3. Parseval’s Relation:

1
= D dnlir= ) gl (3410)

n=<N> n=<N>
> The left-side is the average power in one period of x[n]

> The right-side is the average power in all harmonic
components of x[n]

73
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Example 3.13

m of finding the F
(). This sequence

. 1, of the sequence
damental period of 5. We observe
I as the sum of the square wave x|z . 3.19¢(b) and the
de sequence xaln) in Figure 3.19(c). Denoting the Fourier ser oefficients of x)[7] by
b and those of xaln] by ¢, we use the linearity property > to conclude that
by + ey (3.111)

x[n]

...Hl]_m‘ijl”m

PN B A5 SUUUAR £ & SUUNNS 5 B ST

S ESEEEEEEENEEEE N S

Figure 3.19 1) Periodic sequence x[77] for Example 3.13

(a) d its represen
tation as a sum of (b) the square wave x;[77] and (¢) the dc

uence xa[s)

From Example 3.12 (with N, 1 and N 5). the Fourier series coefficients by corre
sponding to x;[2] can be expressed as
J 1 sin(37r k/5)

» for k o O, =8, =210,
5 sin(mk/5) o

b 2 (3.112)
» tor k Q3 =10,
5
The sequence xal#n] has only a de value, which is captured by its zeroth Fourier
series coefficient
1
= > xaln) 1 (3.113)
4 )

fficients are periodic, it follows that ¢, 1
remaining coefficients of xa[7] must be zero,
We can now substitute the expressions for

Since the discrete-time Fourier series ¢

, s an integer multiple of 5
valz] contains only a de comy
o eq. (3.111) to obtain

>

’ . for kK »= O, =5 10,
A 5 sin(mwk/S)

] 1 sin(39r k/S5)
1 I (3.114)

8
=

Example 3.13

From Example 3.12(with N; =1 & N =5)
x1[n]

1sin(3mk/5)
5 sin(mk/5)

3

X

x,[n] - only have dc value

,fork + 0,+5,+10, ...
- b, =
fork =0,+5,+10, ...

IS

1
PG =g x3[n] =1

_ 1 sin(3rk/5)

- , fork # 0, 45,410, ..
k=5 sin(mk/5) |

- ap=
,fork =0,+5,+10, ...

ul| @

74
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Example 3.14

The signal — x[n]:

1. periodic N = 6

2. ¥n=0x[n] = 2

3. X2 (=D"x[n] =1

4. x{n] has the minimum power per period among the set of signals satisfying
the preceding three conditions

Fact 2: 8y =x yocy»> x[n]=2/6=1/3

- p— )

1
z
1 . ves
Fact 3: as = ﬁ2k=<N>x[n] e J3wen = ]
2
. (&7 1y
ﬁZk=<N>x[n] e 6/ =Eh=2(=1)"x[n]/6 = 1/6
Fact4: P = ¥5_olax|? to minimize the power, leta; = a, = a, = as =0

. 1 1
x[n] = ag + aze/™ = 3]t \g ="

76
Example 3.14
Suppose we are given the following facts about a sequence x[n]:
1. x[n] is periodic with period N = 6.
.5
D ot ] 2.
3. 37 _.(—1)'x[n] = 1.
4. x[n] has the minimum power per period among the set of signals satisfying the
preceding three conditions.
Let us determine the sequence x[n]. We denote the Fourier series coefficients of x[n] by
ay. From Fact 2, we conclude that ay = 1/3. Noting that (—1)" eI = g J@m/o)3n,
we see from Fact 3 that a3 = 1/6. From Parseval’s relation (see Table 3.2), the average
power in x[n] is
5
P =" |ax (3.115)
k=0
Since each nonzero coefficient contributes a positive amount to P, and since the values
of ap and a3 are prespecified, the value of £ is minimized by choosing a; ar = ag =
as = 0. It then follows that
x[n] aop + aze!™ = (1/3) + (1/6)(—1)", (3.116)
which is sketched in Figure 3.20.
x[n]
1
2
1
6
cee I I T LI
2 1 0 1 2 3 n
7

Figure 3.20 Sequence x[n] that is consistent with the properties specified
in Example 3.14.
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Example 3.15

x[n], y[n] - period N
The siginal - w[n] = Z x[r]ly[n —r] - perod of N = 7

r=<N>

3k
2
sin (= )

(7K
7 sin (7)

We observe that ¢, = 7d2 =7d,xd,
3

- wln] = Z x[rlx[n—7r] = Z x[r]x[n —r]

—)Ck:

r=<7> r=-3
3 +oo
- wln] = Z Xrlx[n—7r] = Z X[rlx[n —17]
r=—3 r=—oo

78

Example 3.15

Example 3.15

In this example we determine and sketch a periodic sequence, given an algebraic expres-
sion for its Fourier series coefficients. In the process, we will also exploit the periodic
convolution property (see Table 3.2) of the discrete-time Fourier series. Specifically, as
stated in the table and as shown in Problem 3.58, if x[n] and y[n] are periodic with period
N, then the signal

pulfitetr il o kil

wln| = L xlrlvln = r]

r={N}
is also periodic with period N. Here, the summation may be taken over any set of N
consecutive values of r. Furthermore, the Fourier series coefficients of w[n] are equal to

Nach, where a, and h, are the Fonrier coefficients of x[n] and y[n], respectively.
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226 Fourier Series Representation of Periodic Signals Chap. 3

Suppose now that we are told that a signal w[n] is periodic with a fundamental
period of N = 7 and with Fourier series coefficients

[

oy = A 3.7
7 sin”(mki7)

We observe that ¢, = 7d}, where d;, denotes the sequence of Fourier series coefficients

of a square wave ¥f#h-asin Exampte3.12, with Ny = 1 and N = 7. Using the periodic

convolution property, we see that

3

wln] = Z xlrlx(n—r] = Z Arixln—rl, ! (3.118)

r=(1) r==3

where, in the last equality, we have chosen to sum over the interval —3 = r = 3. Except
for the fact that the sum is limited to a finite interval, the product-and-sum method for
evaluating convolution is applicable here. In fact, we can convert eq. (3.118) to an ordi-
nary convolution by defining a signal £[#] that equals x[s] for =3 = n = 3 and is zero
otherwise. Then, from eq. (3.118),

3
[n] = yln—rl = x[n = r].

That is, w[n] is the aperiodic convolution of the sequences £[n] and x[n].

The sequences x[r], £[r], and x[n—r] are sketched in Figure 3.21 (a)—(c). From the
figure we can immediately calculate w[n]. In particular we see that w[0] = 3; w[—1] =
wll] = 2; w[-2] = w[2] = 1; and w[—3] = w[3] = 0. Since w[n] is periodic with 30
period 7, we can then sketch w[n] as shown in Figure 3.21(d).

38 FOUrIEr SEries aliu L1 oyaisins e,

i)

11 [

1y |
LI LB T O

AN A0 A

Figure 3.21 (a) The square-wave sequence x[r] in Example 3.15; (b) the
sequence X[r] equal to x[r] for —3 = r = 3 and zero otherwise; (c) the
sequence x[n — r]; (d) the sequence w[n] equal to the periodic convolution of
x[n] with itself and to the aperiodic convolution of X[n] with x[n].

When s or z are general complex numbers, H(s) and H(z) are referred to as the

81
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TABLE 3.2 PROPERTIES OF DISCRETE-TIME FOURIER SERIES

2023/4/23

Property Periodic Signal Fourier Series Coefficients
x[n] } Periodic with period N and ax } Periodic with
yln] | fundamental frequency wo = 2u/N by ) period N
Linearity Ax[n] + By[n] Aay + Bb,
Time Shifting x[n — ng) age~ KN
Frequency Shifting M@ ) Ay
Conjugation x[n] a’y
Time Reversal x[—n] a-y
Time Scali ] x[n/m], if nis a multiple of m 1 viewed as periodic
me Scalin; (m! = . . . - . .
& Fomls 0, if n is not a multiple of m m with period mN
(periodic with period mN)
Periodic Convolution Z x[rlyln —r] Nab,
r=(N)
Multiplication x[nly[n] > abi
=)
First Difference x[n] = x[n—1] (1 — e~ /KemiNy g,
. N finite valued and periodic only 1
Running Sum k;m (k] (ifao -0 (U= e-mammy |

Conjugate Symmetry for
Real Signals

Real and Even Signals
Real and Odd Signals

Even-Odd Decomposition
of Real Signals

x[n] real

x[n] real and even

x[n] real and odd

[ xe[n] = Ev{x[n]} [x[n] real]
x,{n] = Od{x[n]} [x[n]real]

a, = a-,
Refa} = Relay} -
Imia} = —Imia_;}
la = la-ui
Lagy = —¥Xa—x
ay real and even
ay, purely imaginary and odd
Refa}
jgm{a}

Parseval’s Relation for Periodic Signals

1
v ST latalt = > lad?
n=(N) k=(N)y
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3.8 Fourier Series and LTI Systems

* In continuous time LTI system:

h(t)

x(t) =

- y(t)

« From the beginning of Section 3.2, Eq. (3.6)
if x(t) = et
then y(t) = H(s)e"t
where H(s) = ffooo h(t)e S"dt

83
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* Indiscrete-time LTI system:

x[n] = |h[n]| - y[n]

From the beginning of Section 3.2, Eq. (3.10)
if x[n] =2z"
then y[n] = H(z) z"
where H(z) = Yo _o hlk]z7*

84

Consider the C-T case: s=jw, est=et, H(s)=H(jw)

For D-T case: |z|=1, z=eV, z"=e"", H(z)=H(el¥)

« Fors = jwand e™St = e=/"t

(0]

H(s) = H(jjw) = f h(t)e /tdt (3.121)

Forz = e/Wand z™ = /W

H(z) = H(eJ'W) = Z h[n]e=Iwn (3.122)

n=-—00

85
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3.8 Fourier Series and LTI Systems
« If x(t) is a periodic signal then the FS representation:
_ C aw ¢ Using Egs. (3-13) and (3-14)
xO= ) aelnt (p. 7 in PPT) and s,=jkw,

) y(t) = Z a,H(jkw, )e/kWot (3.123)

The Fourier series coefficients for y(t)

y(t) is also periodic with the same fundamental frequency as x(t)

86

3.8 Fourier Series and LTI Systems

« If x[n] is a periodic signal then the FS representation:

jk(35n  Using Egs. (3-15) and (3-16)

xXin| = ae f
] z k and z,=eik%

k=<cx1)V>
. (2T . (2T
n] = aH ejk(W) e”‘(W)n
y[ ] k;\bg (3.131)

The Fourier series coefficients for y[n]

y[n] is also periodic with the same fundamental frequency as x[n]
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Example 3.16

Example 3.16

Suppose that the periodic signal x(f) discussed in Example 3.2 1s the input signal to an
LTI system with impulse response

h(t) = e "ult).

; 1
x(t) = Z agel*?™  wherea, =1,a;, = a_; = 7
k=—3
1
az =0a-2 =75, a3 =a-3 =3
88
h(t) = e tu(t)
- H(jw) = Jme—re—jwrd,[ - _ 1 o~Tp—jwT o _ 1
0 1+jw o 1+jw
+3
Wy = 21 - y(t) = Z bkejkzmr
k=—3

bk = akH(].kZTC) - bO =1

1 1 1 1
- 1 . ) —1=_ . )
4\1+j2n 4\1—j2n
b 1 1 b 1 1
d = — —_
27 2\1+j4n)” "2 2\1 — jam
b 1 1 b 1 1
- =— —
373 1+ j6r)’ 373 1—jén)’ 89

44



3
y(t)=1+2 ) Dycos(Qmkt+6;)= 1+2

k=1 k=1

(bk =Dk619k =Ek, +ij, k= 1,2,3)
For example:
1 -1
D, = |by| = —— 0 = b, = —tan~1(2n)
2
41 +4n
Ey = Relby) Fy = Smiby) .
1 = e 1 = — 1 =.J9m 1 = -
4(1 4+ 4m?) 2(1 + 4m?)
. (2T
k| n
- x[n] = ake] (N)
k=<N>
j271:k) ik 27
= = n
- y[n] = akH(e N Jel (N)
k=<N>
Example 3.17
Consider an LTI system with impulse response k[n] = a"u[n], —1 < a < 1, and with
the input
2
Ay = c.»s(‘;’r) (3.132)
As in Example 3.10, x[n] can be written in Fourier series form as
".‘”E o %(‘n‘:, Nn + ‘.F,‘f-' ,11m'4hn‘
Also, from eq. (3.122),
H(e®) = S ameion = S (e )’ (3.133)
n=0 FEn i
This geometric series can be evaluated using the result of Problem 1.54, yielding
H(e") = A— (3.134)
1 — e o
Using eq. (3.131), we then obtain the Fourier series for the output:
)’lﬂ} ik %H((,/lrr/,‘\")(,t@”/r“v"” + %H(e ‘fzm‘v)e— j(2wINIn
I - l i (3.135)
= 2 ( I)(,N:n/,-\'m + 5 (W)e,“gﬂ,m"_
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3
z [Ey cos 2kt — Fy, sin 2mkt]
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Example 3.17 —p2

If we write

. 5, gyl
I — e 2wV fige
then eq. (3.135) reduces to
29
y[n] = rcos(—m—,n + 9). (3.136)
For example, if N = 4,
17 i l s 1 {,i[--lszl(m]
1 —aeJj2nh 1 +aj Jl+a? ’
and thus,
i 1 TH |
y[nl = ——=cos|—=— —tan"'(a) |.
1+ a? 2 y

92

Example 3.17

An LTI system (with h[n] = a™u[n],-1 < a < 1)

input - x[n] = cos (an> = 1ej(ZWn)" + %e_j(%ﬂ)n

2
H(e/?) = Z ate jon = Z(ae‘f“’)n
w=0 n=0
H(e) = T gea

1 j2m) . 2m 1 _j2my) _;z2m
Output: y[n] =EH(e N )eJ(N)" +EH(e N )e ISRl

1 1 . 2TC 1 1 2T
== NG (= )i
=2 (1 - ae‘fZ”/N) ey (1 - aefZ"/N) e

) 1 e 3 21 0
e T ez~ 7€ 2yl = reos| pn
_ 1 __r __1 —jtan™1(a)
If N 4, 1—qe—Jj2m/4 1+aj Vi+a? €
1 n
= y[n] = —=—=cos <_ - tan_1(a))
Y V1+a? 2
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3.9 Filtering

» Filtering:
1. change the relative amplitudes of the frequency
components in a signal

2. eliminate some frequency components entirely

« Frequency-shaping filters: LTI systems that
change the shape of the signal spectrum

* Frequency-selective filters: systems that are
designed to pass some frequencies essentially
undistorted and significantly attenuate or
eliminate others

94

3.9.1 Frequency shaping filters

 An application: audio systems

— The frequency-shaping filters correspond to
LTI systems whose frequency response can be
changed by manipulating the tone controls.

— Tone: bass - low frequency energy
treble — high frequency energy

— Equalizing filters are often included in the
preamplifier to compensate for the frequency-
response characteristics of the speakers

95
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 Another class: for which the filter output is
the derivative of the filter input.

o y(t) = dzg),x(t) = e/ y(t) = joel P

* Hjo) =jo
« A complex exponential input el will receive
greater amplification for large values of w.

« Consequently, differentiating filters are
useful in enhancing rapid variations or
transitions in a signal.

96

Fig. 3.23

| Hijw) |

LH(jw)

hVE ]

Figure 3.23 Characteristics of the
frequency response of a filter for which
the output is the derivative of the in-
put.
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» They are often used to enhance edges in picture
processing (Fig. 3.24). Because the derivative at the
edges of a picture is greater than in regions where the
brightness varies slowly with distance.

Differentiation on a 2D Image

Figure 3.24 Effect of a differentiating filter on an image: (a) the original image; (b)
P.261 the result of processing the original image with a differentiating filter.

» A simple discrete-time filter (Fig. 3.25),
considering an LTI system that successively
take a two-point average of the input values:

yln] = 5 eln] + xIn — 1])

Aln = (81n] + 8Tn — 1])

. 1 . .
H(e™) =5 (14 e7*) = e 2cos(3)
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« In discrete-time we need only consider a 2n
interval of values of o in order to cover a
complete range of distinct discrete-time

frequencies. -

* Fig. 3.25 /

0 T o
—af2 Figure 3.25 (a) Magnitude and
| (b) phase for the frequency response
of the discrete-time LTI system
L i} = 172(x{n] + x{n 1))

3.9.2
* Frequency-Selective Filters
1. Low-pass Filter

H(jw) = 1, lw| < w,
0, |(1)| > wc (3.140)
H(jw)
1
W 0 ¢ [
~—Stopband } Passband { Stopband Figure 3.26 Frequency response of

an ideal lowpass filter.
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3.9.2 Frequency-Selective Filters

2. High-pass Filter & Band-pass Filter

H(jw)

*

_(J)C (ﬂc (01

1
Figure 3.27 (a) Frequency re-
— _ sponse of an ideal highpass filter;
ez et et ez © (b) frequency response of an ideal
®) bandpass filter.
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3.10 Examples of Continuous-Time Filters
Described by Differential Equations (Skip
hereafter)

« 3.10.1 A Simple RC Lowpass Filter

103
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3.10.1 A Simple RC Lowpass Filter

tvlt) -

Figure 3.29 First-order RC filter.
Constant-coefficient differential equation

dvc(t)
dt

RC + v.(t) = vg(t). (3.141)

104

3.10.1 A Simple RC Lowpass Filter

Assuming initial rest, the system described by eq. (3.141) is LTI. In order to
determine its frequency response H(jw), we note that, by definition, with input
voltage vs(t) = e/“t, we must have the output voltage v.(t) = H(jw)e/®t. If
we substitute these expressions into eq.(3.141), we obtain

RC% [H(jw)el®t] + H(jw)el®t = e/t (3.142)

or
RCjwH(jw)el®t + H(jw)el®t = eJ®t, (3.143)

from which it follows directly that
, ot _ 1 it

H(jw)e/*" = e, (3.144)

or

Loy 1

H(jw) = faom. (3.145)
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3.10.1 A Simple RC Lowpass Filter

The magnitude and phase of the frequency response H (jw) for
this example are shown in Figure 3.30. Note that for frequencies
near w = 0, |[H(jw)| = 1, while for larger values of w (positive or
negative), |H(jw)| is considerably smaller and in fact steadily
decreases as |w| increases. Thus, this simple RC filter (with v, (t)
as output) is a nonideal lowpass filter.

To provide a first glimpse at the trade-offs involved in filter
design, let us briefly consider the time-domain behavior of the
circuit. In particular, the impulse response of the system described
by eq. (3.141) is

h(t) = —e /reu(t) (3.146)

106

Fig 3.30

[Hijes)
: : :
—~1/RC 0 1/RC w
(a)
ZH(jm)
L2
— —— /4
f 1/RC
~1/RC 0 | ®
B L) w—_—
+ w2
(b) 107
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3.10.1 A Simple RC Lowpass Filter

and the step response is

s(t) = [1 - e_R_tC]u(t), (3.147)
Both of which are plotted in Figure 3.31 (where 7 = RC). Comparing
Figures 3.30 and 3.31, we see a fundamental trade-off. Specifically,
suppose that we would like our filter to pass only very low frequencies.
From Figure 3.30(a), this implies that 1/RC must be small, or equivalently,
that RC is large, so that frequencies other than the low ones of interest will
be attenuated sufficiently. However, looking at Figure 3.31(b), we see that
if RC is large, then the step response will take a considerable amount of
time to reach its long-term value of 1. That is, the system responds
sluggishly to the step input. Conversely, if we wish to have a faster step
response, we need a smaller value of RC, which in turn implies that the
filter will pass higher frequencies. This type of trade-off between behavior
in the frequency domain and in the time domain is typical of the issues
arising in the design and analysis of LTI systems and filters and is a subject
we will look at more carefully in Chapter 6. 108

3.10.1 A Simple RC Lowpass Filter

(@)

Figure 3.31 (a) Impulse response
t of the first-order RC lowpass filter with
7 = RC; (b) step response of RC low-

(b) pass filter with - = RC

)9
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3.10.2 A Simple RC Highpass Filter

And output is

RCEAD 4 vry = RCED, (3.148)
We can find the frequency response G (jw) of this system in exactly the same way we did in
the previous case: If v (t) = e/®t, then we must have v,(t) = G (jw) e/*t; substituting these
expressions into eq. (3.148) and performing a bit of algebra, we find that

Gw) = jwRC

o) =13 oRe

The magnitude and phase of this frequency response are shown in Figure 3.32. From the
figure, we see that the system attenuates lower frequencies and passes higher frequencies---
i.e., those for which |w[>>1/RC---with minimal attenuation. That is, this system acts as a
nonideal highpass filter.

As with the lowpass filter, the parameters of the circuit control both the frequency
response of the highpass filter and its time response characteristics. For example, consider the
step response for the filter. From Figure 3.29, we see that v,.(t) = vy — v (t). Thus, if
v(t)=u(t), v.(t) must be given by eq.(3.147). Consequently, the step response of the
highpass filter is

(3.149)

t
Vi) = e_ﬁu(t), (3.150)
Which is depicted in Figure 3.33. Consequently, as RC is increased, the response becomes
more sluggish---i.e., the step response takes a longer time to reach its long-term value 110

3.10.2 A Simple RC Highpass Filter

|G(jew)

(b)

Figure 3.32 (a) Magnitude and (b) phase plots for the frequency response

of the RC circuit of Figure 3.29 with output v,(f) m
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3.10.2 A Simple RC Highpass Filter

I

I

| Figure 3.33  Step response of the
RC t  first-order RC highpass filter with
T = RC.

of 0. From Figure 3.32, we see that increasing RC (or equivalently, decreasing 1/RC)
also affects the frequency response, specifically, it extends the passband down to lower
frequencies.

We observe from the two examples in this section that a simple RC circuit can serve
as arough approximation to a highpass or a lowpass filter, depending upon the choice of the
physical output variable. As illustrated in Problem 3.71, a simple mechanical system using
amass and a mechanical damper can also serve as a lowpass or highpass filter described by

112

3.10.2 A Simple RC Highpass Filter

Analogous first-order differential equations. Because of their
simplicity, these examples of electrical and mechanical filters do
not have a sharp transition from passband to stopband and, in fact,
have only a single parameter (namely, RC in the electrical case) that
controls both the frequency response and time response behavior of
the system. By designing more complex filters, implemented using
more energy storage elements (capacitances and inductances in
electrical filters and springs and damping devices in mechanical
filters), we obtain filters described by higher order differential
equations. Such filters offer considerably more flexibility in terms
of their characteristics, allowing, for example, sharper passband-
stopband transition or more control over the trade-offs between
time response and frequency response.

113
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3.11 Examples of Discrete-Time Filters
Described by Differential Equations

« 3.11.1 First-Order Recursive Discrete-Time Filters

The discrete-time counterpart of each of the first-order filters
considered in Section 3.10 is the LTI system described by the
first-order difference equation

y[n] — ay[n — 1] = x[n]. (3.151)
From the eigen function property of complex exponential
signals, we know that if x[n] = e/®™, then y[n] =
H(e/®)el®™ where H(e/®) is the frequency response of the
system. Substituting into eq. (3.151), we obtain

H(e/®)e/o™ — aH(e/?) e/*(~1D) = eJon, (3,152)
or
[1 — ae /@ H(e/?) /@™ = eJo™, (3.153)

114

3.11.1 First-Order Recursive Discrete-Time Filters

so that

1
1—aqge o’
The magnitude and phase of H(e/“) are shown in Figure 3.34(a) for a=0.6 and in
Figure 3.34(b) for a=-0.6. We observe that, for the positive value of a, the
difference equation (3.151) behaves like a lowpass filter with minimal attenuation
of low frequencies near w = 0 and increasing attenuation as we increase w to
toward w = 7. For the negative value of a, the system is a highpass filter, passing
frequencies near w = m and attenuating lower frequencies. In fact, for any positive
value of a < 1, the system approximates a lowpass filter, and for any negative
value of a > —1, the system approximates a highpass filter, where |a| controls the
size of the filter passband, with broader passbands as |a| is decreased.

As with the continuous-time examples, we again have a trade-off between

time domain and frequency domain characteristics. In particular, the impulse
response of the system described by eq. (3.151) is

H(e/®) = (3.154)

h[n] = a™u[n]. (3.155)
115
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3.11.1 First-Order Recursive Discrete-Time Filters

The step response s[n] * h[n] is

s[n] = 7au[n]. (3.156)

1-—

From these expressions, we see that |a| also controls the speed with which the
impulse and step responses approach their long-term values, with faster responses
for smaller values of |a|, and hence, for filters with smaller passhands. Just as with
differential equations, higher order recursive difference equations can be used to
provide sharper filter characteristics and to provide more flexibility in balancing
time-domain and frequency-domain constraints.

Finally, note from eq.(3.155) that the system described by eq. (3.151) is
unstable if |aj=1 and thus does not have a finite response to complex exponential
inputs. As we stated previously, Fourier-based methods and frequency domain
analysis focus on systems with finite responses to complex exponentials; hence, for
examples such as eq.(3.151), we restrict ourselves to stable systems.

116

3.11.1 First-order Recursive Discrete-Time Filters

Figure 3.34 Frequency response
of the first-order recursive discrete-
time filter of eq. (3.151): (a) a = 0.6;
(b)y a = —06.
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3.11.1 First-order Recursive Discrete-Time Filters

[ H(el) |

Jr Figure 3.34  Frequency response
2 of the first-order recursive discrete-

time filter of eq. (3.151): (a) a = 0.6;
(b) (b)ya= —-06
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3.11.2 Nonrecursive Discrete-Time Filters

The general form of an FIR nonrecursive difference equation is
M

[n] = b x[n—k]. 3.157
y ,Z_N = k) (3157)
That is, the output y[n] is a weighted average of the (N + M + 1)
values of x[n] from x[n — M] through x[n + N], with the weights
given by the coefficients b,. Systems of this form can be used to
meet a broad array of filtering objectives, including frequency-
selective filtering.

One frequently used example of such a filter is a moving-average
filter, where the output y[n] for any n---say, n,---is an average of
values of x[n] in the vicinity of n,.

119
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3.11.2 Nonrecursive Discrete-Time Filters

Basic idea is that by averaging values locally, rapid high-frequency components of
the input will be averaged out and lower frequency variations will be retained,
corresponding to smoothing or lowpass filtering the original sequence. A simple
two-point moving-average filter was briefly introduced in Section 3.9 [eq. (3.138)].
An only slightly more complex example is the three-point moving-average filter,
which is of the form

y[n] = %[x[n + 1] + x[n] + x[n — 1]],
h[n] =%[6[n + 1] + 8[n] + 8[n — 1]]

And thus, from eq.(3.122), the corresponding frequency response is

H(el® _1 e/ +14+e7J?] = 1(1 + 2cosw). (3.159)
3 3

The magnitude of H(e/*)is sketched in Figure 3.35. We observe that the filter has
the general characteristics of a lowpass filter, although, as with the first-order
recursive filter, it does not have a sharp transition from passband to stopband.

120

3.11.2 Nonrecursive Discrete-Time Filters

V. L Figure 3.35 Magnitude of the fre-
S 27  quency response of a three-point
2 moving-average lowpass filter

The three-point moving-average filter in eq.(3.158) has no parameters that can
be changed to adjust the effective cutoff frequency. As a generalization of this
moving-average filter, we can consider averaging over N + M + 1 neighboring
points---that is, using a difference equation of the form

M
1
y[n] = meNX[TL - k] (3160)

. . . . 1
The corresponding impulse response is a rectangular pulse (i.e., h[n] = ™

for =N < n < M, and h[n]=0 otherwise). The filter’s frequency response is

M
. 1 .
H(e/?) = —— E —jwk, 3.161
) N+ M+ lk__Ne ( )
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3.11.2 Nonrecursive Discrete-Time Filters

The summation in eq.(3.161) can be evaluated by performing

calculations similar to those in Example 3.12, yielding
[w(M + N+ 1)]
2

L

H(e/®) = T - (w) (3.162)

2
By adjusting the size, N + M + 1, of the averaging window we can vary the cutoff
frequency. For example, the magnitude of H(e/®) is shown in Figure 3.36 for N +
M+ 1=33and N+ M + 1 = 65.
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3.11.2 Nonrecursive Discrete-Time Filters

|Hie"™)

1

m w2 0

Nonrecursive filters can also used to perform highpass
filtering operations. To illustrate this, again with a simple
example, consider the difference equation

x[n] — x[n — 1]
y[n] = >
For input signals that are approximately constant, the value of
y[n] is close to zero. For input signals that vary greatly from
sample to sample, the values of y[n] can be expected to have
larger amplitude. 123

(3.163)
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3.11.2 Nonrecursive Discrete-Time Filters

Thus, the system described by eq.(3.163) approximates a highpass
filtering operation, attenuating slowly varying low-frequency
components and passing rapidly varying higher frequency
components with little attenuation. To see this more precisely we
need to look at the system’s frequency response. In this case, h[n] =

%{S[n] — &[n — 1]}, so that direct application of eq.(3.122) yields
. 1 . .
H(e/?) = > [1—e7/®] = je/®/2sin (%) (3.164)

In Figure 3.37 we have plotted the magnitude of H(e/*), showing
that this simple system approximates a highpass filter, albeit one with
a very gradual transition from passband to stopband. By considering
more general nonrecursive filters, we can achieve far sharper

transitions in lowpass, highpass, and other frequency-selective filters.
124

3.11.2 Nonrecursive Discrete-Time Filters

| Hee

1

. Figure 3.37 Frequency response of
a simple highpass filter

Note that, since the impulse response of any FIR system is of finite
length (i.e., from eq.(3.157), h[n]=b, for =N <n < M and 0
otherwise), it is always absolutely summable for any choices of the b,,.
Hence, all such filters are stable. Also, if N>0 in eq.(3.157), the system
is noncausal, since y[n] then depends on future values of the input. In
some applications, such as those involving the processing of previously
recorded signals, causality is not a necessary constraint, and thus, we
are free to use filters with N>0. In others, such as many involving real-
time processing, causality is essential, and in such cases we must take
N <O0. 125
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Problems
. 3.3,3.7(3.8 #}R), 3.10, 3.11

- 3.13,3.14
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