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Chapter 3

Fourier Series for Periodic Signals
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Introduction

• We explore an alternative representation (complex 

exponential) for signals and LTI systems.

• This chapter focuses on the representation of 

continuous-time and discrete-time signals referred 

to as the Fourier series.

• If the input to an LTI system is expressed as a 

linear combination of periodic complex 

exponentials or sinusoids, the output can also be 

expressed in this form, with coefficients that are 

related in a straightforward way to those of the 

input.
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3.2 The Response of LTI Systems to 

Complex Exponentials

• The response of an LTI system to a complex 

exponential input is the same complex exponential 

with a change in amplitude:

continuous time :𝑒𝑠𝑡 → 𝐻(𝑠)𝑒𝑠𝑡

discrete time: 𝑧𝑛 → 𝐻 𝑧 𝑧𝑛

H(s) is the system’s eigenvalue.

est is the system’s eigenfunction.

3

• Continuous-time LTI system case:

We consider x(t)=est,

then y(t)=x(t)*h(t)

∞−׬=
+∞

ℎ 𝜏 𝑥 𝑡 − 𝜏 𝑑𝜏

∞−׬=
+∞

ℎ 𝜏 𝑒𝑠(𝑡−𝜏)𝑑𝜏

= 𝑒𝑠𝑡 ∞−׬
+∞

ℎ 𝜏 𝑒−𝑠𝜏𝑑𝜏

=H(s)est where H(s)=׬−∞
+∞

ℎ 𝜏 𝑒−𝑠𝜏𝑑𝜏

4
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• Discrete-time LTI system case:

We consider x[n]=zn ,

then y[n]=x[n]*h[n]

=σ𝑘=−∞
∞ ℎ 𝑘 𝑥[𝑛 − 𝑘]

=σ𝑘=−∞
∞ ℎ[𝑘] 𝑧𝑛−𝑘

=𝑧𝑛σ𝑘=−∞
∞ ℎ 𝑘 𝑧−𝑘

=𝐻[𝑧] ∙ 𝑧𝑛

where 𝐻[𝑧] ≡ σ𝑘=−∞
∞ ℎ[𝑘]𝑧−𝑘
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• Eigenfuction & Eigenvalue:

est is an eigenfunction, H(s) is the corresponding eigenvalue

zn is an eigenfunction, H[z] is the corresponding eigenvalue

• Linear Combination:

If 𝑥 𝑡 = 𝑎1𝑒
𝑠1𝑡 + 𝑎2𝑒

𝑠2𝑡 + 𝑎3𝑒
𝑠3𝑡

𝑎1𝑒
𝑠1𝑡 → 𝑎1𝐻(𝑠1)𝑒

𝑠1𝑡

𝑎2𝑒
𝑠2𝑡 → 𝑎2𝐻(𝑠2)𝑒

𝑠2𝑡

𝑎3𝑒
𝑠3𝑡 → 𝑎3𝐻(𝑠3)𝑒

𝑠3𝑡

then 𝑦 𝑡 = 𝑎1𝐻(𝑠1)𝑒
𝑠1𝑡 + 𝑎2𝐻(𝑠2)𝑒

𝑠2𝑡 + 𝑎3𝐻(𝑠3)𝑒
𝑠3𝑡

6
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Specifically:

Table of the LTI system’s linear combination

7

Input Output

CT 𝑥 𝑡 =෍

𝑘

𝑎𝑘𝑒
𝑠𝑘𝑡 𝑦 𝑡 =෍

𝑘

𝑎𝑘𝐻(𝑠𝑘)𝑒
𝑠𝑘𝑡

DT 𝑥[𝑛] =෍

𝑘

𝑎𝑘 𝑧𝑘
𝑛 𝑦[𝑛] =෍

𝑘

𝑎𝑘𝐻(𝑧𝑘)𝑧𝑘
𝑛

8

Example 3.1

𝑦(𝑡) = 𝑥(𝑡 − 3), 𝑥(𝑡) = 𝑒𝑗2𝑡, 𝑠
= 𝑗2
𝑦(𝑡) = 𝑒𝑗2(𝑡−3) = 𝑒−𝑗6𝑒𝑗2𝑡 = 𝐻(𝑗2)𝑒𝑗2𝑡

Another way to find H(s)

ℎ(𝑡) = 𝛿(𝑡 − 3)

𝐻(𝑠) = න
−∞

∞

𝛿(𝜏 − 3)𝑒−𝑠𝜏𝑑𝜏 = 𝑒−3𝑠 ⇒ 𝐻(𝑠) = 𝑒−𝑗6
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3.3 Fourier Series Representation of 

Continuous-time Periodic Signals

• Harmonically related complex exponentials:

∅𝑘 𝑡 = 𝑒𝑗𝑘𝜔0𝑡 = 𝑒
𝑗𝑘

2𝜋
𝑇

𝑡
, 𝑘 = 0,∓1,∓2,……

fundamental frequency: 𝜔0

fundamental period: 𝑇 = 2𝜋/𝜔0

• Linear Combination of harmonically related 

complex exponentials:

𝑥 𝑡 = ෍

𝑘=−∞

+∞

𝑎𝑘𝑒
𝑗𝑘𝑤0𝑡 = ෍

𝑘=−∞

+∞

𝑎𝑘𝑒
𝑗𝑘

2𝜋
𝑇

𝑡

10
➔ is also periodic with period T.
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Example 3.2

𝑥(𝑡) = ෍

𝑘=−3

3

𝑎𝑘𝑒
𝑗𝑘2𝜋𝑡 , where 𝑎0 = 1, 𝑎1 = 𝑎−1 =

1

4
,

𝑎2 = 𝑎−2 =
1

2
, 𝑎3 = 𝑎−3 =

1

3
𝑥(𝑡)

= 1 +
1

4
(𝑒𝑗2𝜋𝑡 + 𝑒−𝑗2𝜋𝑡) +

1

2
(𝑒𝑗4𝜋𝑡 + 𝑒−𝑗4𝜋𝑡) +

1

3
(𝑒𝑗6𝜋𝑡

+ 𝑒−𝑗6𝜋𝑡)

= 1 +
1

2
cos 2 𝜋𝑡 + cos 4 𝜋𝑡 +

2

3
cos 6 𝜋𝑡

12
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• Suppose that x(t) is a real periodic signal, then x*(t)=x(t)

𝑥 𝑡 = σ𝑘=−∞
+∞ 𝑎𝑘𝑒

𝑗𝑘𝜔0𝑡

𝑥∗ 𝑡 = σ𝑘=−∞
+∞ 𝑎𝑘

∗𝑒−𝑗𝑘𝜔0𝑡 (replace k by -k)

= σ𝑘=−∞
∞ 𝑎−𝑘

∗𝑒𝑗𝑘𝜔0𝑡

⇒ 𝑎−𝑘
∗ = 𝑎𝑘 ⇒ 𝑎𝑘

∗ = 𝑎−𝑘
• x(t) can be expressed in another form:

𝑥 𝑡 = 𝑎0+෍

𝑘=1

∞

[𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 + 𝑎−𝑘𝑒

−𝑗𝑘𝜔0𝑡] (𝑎−𝑘 = 𝑎𝑘
∗)

= 𝑎0 +෍

𝑘=1

∞

[𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 + 𝑎𝑘

∗𝑒−𝑗𝑘𝜔0𝑡]

= 𝑎0 +෍

𝑘=1

∞

2𝑅𝑒 𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡

13

• ak is expressed in polar form:

𝑎𝑘 = 𝐴𝑘𝑒
𝑗𝜃𝑘

=> 𝑥 𝑡 = 𝑎0+෍

𝑘=1

∞

2𝑅𝑒 𝐴𝑘𝑒
𝑗(𝑘𝜔0𝑡+𝜃𝑘)

= 𝑎0+ 2෍

𝑘=1

∞

𝐴𝑘cos 𝑘𝜔0𝑡 + 𝜃𝑘

• ak is expressed in rectangular form:

ak=Bk+jCk

=> 𝑥 𝑡 = 𝑎0+ 2෍

𝑘=1

∞

[𝐵𝑘cos 𝑘𝜔0𝑡 − 𝐶𝑘sin 𝑘𝜔0𝑡]

14

• If 𝑎𝑘′s are all real, 𝑎𝑘 = 𝐴𝑘 = 𝐵𝑘, 𝐶𝑘 = 0, 𝜃𝑘 = 0

𝑥(𝑡) = 𝑎0 + 2෍

𝑘=1

∞

𝐵𝑘 cos 𝑘 𝑤0𝑡
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3.3.2 Determination of the Fourier series representation of a 

continuous-time periodic signal

• Multiplying both sides of 𝑥 𝑡 = σ𝑘=−∞
+∞ 𝑎𝑘𝑒

𝑗𝑘𝜔0𝑡 by 𝑒−𝑗𝑛𝜔0𝑡

=> 𝑥 𝑡 𝑒−𝑗𝑛𝜔0𝑡 = ෍

𝑘=−∞

+∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡𝑒−𝑗𝑛𝜔0𝑡

Integrating both sides from 0 to 𝑇 = Τ2𝜋
𝜔0

=> න
0

𝑇

𝑥 𝑡 𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡 = න
0

𝑇

෍

𝑘=−∞

+∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡

= ෍

𝑘=−∞

∞

𝑎𝑘 ∙ න
0

𝑇

𝑒𝑗(𝑘−𝑛)𝜔0𝑡𝑑𝑡

• If k=n, 0׬
𝑇
𝑒𝑗(𝑘−𝑛)𝜔0𝑡𝑑𝑡= 0׬

𝑇
1𝑑𝑡 = T

If 𝑘 ≠ 𝑛,

• 0׬
𝑇
𝑒𝑗(𝑘−𝑛)𝜔0𝑡𝑑𝑡, 𝜔0=

2𝜋

𝑇

=
1

𝑗(𝑘−𝑛)𝜔0

𝑒𝑗(𝑘−𝑛)𝜔0𝑡|0
𝑇

=
1

𝑗(𝑘−𝑛)𝜔0

[𝑒𝑗(𝑘−𝑛)𝜔0𝑇- 𝑒0] = … = 0

• 𝑒𝑗(𝑘−𝑛)𝜔0𝑇- 𝑒0

= cos[ 𝑘 − 𝑛 2𝜋]+jsin [(𝑘 − 𝑛)2𝜋]-1

= 1+0-1

=0
16
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=> න
0

𝑇

𝑥 𝑡 𝑒𝑗 𝑘−𝑛 𝜔0𝑡𝑑𝑡 = ቊ
𝑇, 𝑘 = 𝑛
0, 𝑘 ≠ 𝑛

we can find: 0׬
𝑇
𝑥(𝑡)𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡 = 𝑎𝑛 ∙ 𝑇

=> 𝑎𝑛 =
1

𝑇
න
0

𝑇

𝑥(𝑡)𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡

• For any interval of length T, we’ll obtain the same 

result:

𝑎𝑛 =
1

𝑇
න
𝑇

𝑥(𝑡)𝑒−𝑗𝑛𝜔0𝑡𝑑𝑡

17

Definition 3.1 Fourier Series

for a continuous and periodic signal x(t) = x(t+T) 

synthesis: 0 (2 / )( )
jk t jk T t

k k

k k

x t a e a e
 

+ +

=− =−

= = 

analysis:
0 (2 / )1 1

( ) ( )
jk t jk T t

k

T T

a x t e dt x t e dt
T T

 − −= = 

T is the integration from t0 to t0+T and t0 can be any value

Specially, if t0 = 0, 

analysis: 0 (2 / )

0 0

1 1
( ) ( )

T T
jk t jk T t

ka x t e dt x t e dt
T T

 − −= = 

P.216
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analysis: 0 (2 / )1 1
( ) ( )

jk t jk T t

k

T T

a x t e dt x t e dt
T T

 − −= = 

{ak} are often called the Fourier series coefficients or the 

spectral coefficients of x(t).

Specially, when k = 0, 

0

1
( )

T

a x t dt
T

= 

P.216

Supplement:  Alternative Forms of the Fourier Series

02
( )

j k f t

k

k

x t a e


+

=−

= synthesis: 

analysis:
021

( )
j k f t

k

T

a x t e dt
T

−
=  where f0 = 1/T.

synthesis: 

analysis:

01( )
jk t

k

k

x t a e
T


+

−

=−

= 

01 ( )
jk t

k

T

a x t e dt
T


= 
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Examples 3.3

𝑥(𝑡) = sin𝑤0 𝑡 =
1

2𝑗
𝑒𝑗𝑤0𝑡 −

1

2𝑗
𝑒−𝑗𝑤0𝑡

𝑎1 =
1

2𝑗
, 𝑎−1 = −

1

2𝑗
, 𝑎𝑘 = 0, for 𝑘

≠ +1 or − 1

It is easier to expand the sinusoidal signal as a linear 

combination of complex exponentials and identify 

the Fourier series coefficients by inspection.

23

Examples 3.4
𝑥(𝑡) = 1 + sin𝑤0 𝑡 + 2 cos𝑤0 𝑡 + cos( 2𝑤0𝑡 +

𝜋

4
)

= 1 +
1

2𝑗
[𝑒𝑗𝑤0𝑡 − 𝑒−𝑗𝑤0𝑡] + [𝑒𝑗𝑤0𝑡 + 𝑒−𝑗𝑤0𝑡] +

1

2
[𝑒𝑗(2𝑤0𝑡+𝜋/4) + 𝑒−𝑗(2𝑤0𝑡+𝜋/4)]

= 1 + (1 +
1

2𝑗
)𝑒𝑗𝑤0𝑡 + (1 −

1

2𝑗
)𝑒−𝑗𝑤0𝑡 + (

1

2
𝑒𝑗(𝜋/4))𝑒𝑗2𝑤0𝑡 + (

1

2
𝑒−𝑗(𝜋/4))𝑒−𝑗2𝑤0𝑡

𝑎0 = 1

𝑎1 = (1 +
1

2𝑗
) = 1 −

1

2
𝑗, 𝑎−1 = (1 −

1

2𝑗
)

= 1 +
1

2
𝑗,

𝑎2 =
1

2
𝑒𝑗(𝜋/4) =

2

4
(1 + 𝑗),

𝑎−2 =
1

2
𝑒−𝑗(𝜋/4) =

2

4
(1 − 𝑗),

𝑎𝑘 = 0 for |𝑘| > 2.



2023/4/23

12

24

25

Examples 3.5

𝑥(𝑡) = ቊ
1, |𝑡| < 𝑇1
0, 𝑇1 < |𝑡| < 𝑇/2

,

periodic with fundamental period 𝑇.
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• Because x(t) is symmetry about t=0, it is 

convenient to choose                                  as the 

interval over which the integration is performed.

• First, k=0

• For  

−𝑇/2 ≤ 𝑡 < 𝑇/2

𝑎0 =
1

𝑇
න
−𝑇1

𝑇1

𝑑𝑡 =
2𝑇1
𝑇

.

𝑎𝑘 =
1

𝑇
න
−𝑇1

𝑇1

𝑒−𝑗𝑘𝑤0𝑡𝑑𝑡 = −
1

𝑗𝑘𝑤0𝑇
𝑒−𝑗𝑘𝑤0𝑡 ቚ

−𝑇1

𝑇1

=
2

𝑘𝑤0𝑇
[
𝑒𝑗𝑘𝑤0𝑇1 − 𝑒−𝑗𝑘𝑤0𝑇1

2𝑗
] =

2 sin( 𝑘𝑤0𝑇1)

𝑘𝑤0𝑇

=
sin( 𝑘𝑤0𝑇1)

𝑘𝜋
, 𝑘 ≠ 0

𝑘 ≠ 0

27

The coefficients are plotted for 

a fixed value of T1 and several 

values of T.
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3.4 Convergence of the Fourier Series
Examine the problem of approximating a given periodic signal x(t) by a linear 

combination of a finite number of harmonically related complex exponentials.

𝑥𝑁 𝑡 = ෍

𝑘=−𝑁

𝑁

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 . (3.47)

Let eN(t) denote the approximation error; that is,

𝑒𝑁 𝑡 = 𝑥 𝑡 − 𝑥𝑁 𝑡 = 𝑥 𝑡 − ෍

𝑘=−𝑁

+𝑁

𝑎𝑘𝑒
𝑗𝑘𝜔

0
𝑡 . (3.48)

In order to determine how good any particular approximation is, we need to 

specify a quantitative measure of the size of the approximation error. The 

criterion that we will use is the energy in the error over one period:

𝐸𝑁 = න
𝑇

𝑒𝑁 𝑡 2𝑑𝑡. (3.49)

As shown in Problem 3.66, the particular choice for the coefficients in eq. 

(3.47) that minimize the energy in the error is (the same as Eq. (3.39))

𝑎𝑘 =
1

𝑇
න
𝑇

𝑥 𝑡 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡. (3.50)

• The best approximation using only a finite 

number of harmonically related complex 

exponentials is obtained by truncating the 

Fourier series to the desired number of 

terms. 

• As N increases, new terms are added and En

decreases. If x(t) has a Fourier series 

representation, then the limit of En as N→∞
is zero.

29
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• Not any periodic signal has a Fourier series 

representation.

• What kind of signal can be represented by Fourier 

series:

1. A signal has finite energy over a period

𝑇׬ |𝑥(𝑡)|2𝑑𝑡 < ∞ (3.51)

When this condition is satisfied, we are guaranteed 

that ak obtained from (3.39) are finite.

30

• Dirichlet conditions:

➢Condition 1: x(t) must be absolutely integrable over any 

period.

𝑇׬ |𝑥(𝑡)| 𝑑𝑡 < ∞, then ak < ∞

➢Condition 2: In any finite interval of time, x(t) is of 

bounded variation; that is, there are no more than a 

finite number of maxima and minima during any single 

period of the signal.

➢Condition 3: In any finite interval of time, there are a 

finite number of discontinuities. Furthermore, each of 

these discontinuities is finite. 31

An alternative set of conditions guarantees that x(t) equals its 

Fourier series representation, except at isolated values of t for 

which x(t) is discontinuous. ➔ Dirichlet conditions
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32

3

𝑥 𝑡 =
1

𝑡
for 0<t<=1

𝑥 𝑡 = sin(
2𝜋

𝑡
)

33

Gibbs phenomenon: the truncated Fourier series approximation xN(t) 

of a discontinuous signal x(t) will in general exhibit high-frequency 

ripples and overshoot x(t) near the discontinuities.
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3.5 Properties of Continuous-Time Fourier Series

3.5.1 Linearity

• 1. Linearity:

if

𝑥 𝑡
𝐹.𝑆.

𝑎𝑘

𝑦 𝑡
𝐹.𝑆.

𝑏𝑘
then

𝑧 𝑡 = 𝐴𝑥 𝑡 + 𝐵𝑦 𝑡
𝐹.𝑆.

𝑐𝑘 = 𝐴𝑎𝑘 + 𝐵𝑏𝑘

34

3.5.2 Time Shifting & 3.5.3 Time Reversal

• 2. Time Shifting:

if 𝑥 𝑡
𝐹.𝑆.

𝑎𝑘
then

𝑥(𝑡 − 𝑡0)
𝐹.𝑆.

𝑒−𝑗𝑘𝜔0𝑡0𝑎𝑘 = 𝑒−𝑗𝑘(2𝜋/𝑇)𝑡0𝑎𝑘
• 3. Time Reversal:

if 𝑥 𝑡
𝐹.𝑆.

𝑎𝑘
then

𝑥 −𝑡
𝐹.𝑆.

𝑎−𝑘

35
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3.5.4 Time Scaling & 3.5.5 Multiplication

• 4. Time Scaling:

if

𝑥 𝑡 = ෍

𝑘=−∞

+∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 = ෍

𝑘=−∞

+∞

𝑎𝑘𝑒
𝑗𝑘(2𝜋/𝑇)𝑡

then

𝑥 𝛼𝑡 = ෍

𝑘=−∞

+∞

𝑎𝑘𝑒
𝑗𝑘(𝛼𝜔0)𝑡

• 5. Multiplication:

if 𝑥 𝑡
𝐹.𝑆.

𝑎𝑘 y 𝑡
𝐹.𝑆.

𝑏𝑘

then

𝑥 𝑡 𝑦 𝑡
𝐹.𝑆.

ℎ𝑘 = σ𝑙=−∞
∞ 𝑎𝑙𝑏𝑘−𝑙 36

3.5.6 Conjugation and Conjugate Symmetry

• 6. Conjugation & Conjugate Symmetry:

*conjugation:

if 𝑥 𝑡
𝐹.𝑆.

𝑎𝑘

then   𝑥
∗
𝑡

𝐹.𝑆.
𝑎

∗
−𝑘

*conjugate symmetry:

if x(t) real, that is x(t)=x*(t)

then 𝑎−𝑘 = 𝑎
∗

𝑘

*if x(t) real and even, then ak real and even.

*If x(t) real and odd, then a𝑘 purely imaginary and odd.

37
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3.5.7 Parseval’s Relation for Continuous-

Time Periodic Signals 

•
1

𝑇
𝑇׬ 𝑥 𝑡 2𝑑𝑡 = σ𝑘=−∞

∞ |𝑎𝑘|2

Average power in one period of x(t)

Note that:

1

𝑇
න
𝑇

෍

𝑘=−∞

∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡 2𝑑𝑡 = ෍

𝑘=−∞

∞
1

𝑇
න
𝑇

𝑎𝑘
2 ∙ 1𝑑𝑡 = ෍

𝑘=−∞

∞

|𝑎𝑘|2

*The total average power in a periodic signal equals the sum of 

the average powers in all of its harmonic components.

38

39
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40

Example 3.6

𝑔 𝑡 with 𝑇 = 4 as shown in Fig. 3.10
→ 𝑔 𝑡 = 𝑥 𝑡 − 1 − 1/2

41

→ 𝑏𝑘 =𝑎𝑘 𝑒
−𝑗𝑘𝜋/2

→ 𝑐𝑘 = ቐ
0, for 𝑘 ≠ 0

−
1

2
, for 𝑘 = 0

→ 𝑑𝑘 = ൞
𝑎𝑘 𝑒

−𝑗𝑘𝜋/2, for 𝑘 ≠ 0

𝑎0 −
1

2
, for 𝑘 = 0

→ 𝑑𝑘 = ቐ
sin(𝜋𝑘/2)

𝑘𝜋
𝑒−𝑗𝑘𝜋/2, for 𝑘 ≠ 0

0, for 𝑘 = 0
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43
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Example 3.7

𝑥 𝑡 with 𝑇 = 4 and 𝜔0 =
𝜋

2
as shown in Fig. 3.11

→ 𝑑𝑘 = 𝑗𝑘
𝜋

2
𝑒𝑘

→ 𝑒𝑘 =
2𝑑𝑘
𝑗𝑘𝜋

=
2sin

𝜋𝑘
2

𝑗 𝑘𝜋 2
𝑒−

𝑗𝑘𝜋
2 , 𝑘 ≠ 0

→ For 𝑘 = 0, 𝑒0 =
1

2 44

45
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Example 3.8

𝑥 𝑡 with 𝑇 = 4 and 𝜔0 =
𝜋

2
as shown in Fig. 3.12

46

→ 𝑥 𝑡 = ෍

𝑘=−∞

∞

𝛿 𝑡 − 𝐾𝑇 ;

→ 𝑎𝑘 =
1

𝑇
න
−
𝑇
2

𝑇
2
𝛿 𝑡 𝑒−

𝑗𝑘2𝜋𝑡
𝑇 𝑑𝑡 =

1

𝑇
;

→ 𝑞 𝑡 = 𝑥 𝑡 + 𝑇1 − 𝑥 𝑡 − 𝑇1

47

→ 𝑏𝑘 = 𝑒𝑗𝑘𝜔0𝑇1𝑎𝑘 − 𝑒−𝑗𝑘𝜔0𝑇1𝑎𝑘

𝜔0 =
2𝜋

𝑇
→ 𝑏𝑘 = 2𝑗sin 𝑘𝜔0𝑇1 𝑎𝑘=2𝑗sin 𝑘𝜔0𝑇1 /T

𝑏𝑘 = 𝑗𝑘𝜔0𝑐𝑘

→ 𝑐𝑘 =
𝑏𝑘
𝑗𝑘𝜔0

=
2𝑗sin 𝑘𝜔0𝑇1

𝑗𝑘𝜔0𝑇
=
sin 𝑘𝜔0𝑇1

𝑘𝜋
, 𝑘 ≠ 0
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48

49

Fact 2
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50

Example 3.9 –p2

Example 3.9

51

Fact 2: Fundamental Frequency:  0=2/4=/2

Fact 3: 𝑥 𝑡 = 𝑎0 + 𝑎1𝑒
𝑗𝜋𝑡
2 + 𝑎−1𝑒

−
𝑗𝜋𝑡
2

Fact 1: 𝑎1=𝑎∗−1, 𝑎1
∗ = 𝑎−1 → 𝑥 𝑡 = 𝑎0 + 2Re 𝑎1𝑒

𝑗𝜋𝑡

2

Fact 4:

using odd signal, time reversal, and time shifting 

properties, bk is corresponding to the signal 

x(-(t-1))=x(-t+1)

Since 𝑥 𝑡 is real, x(-t+1) must also be real and its Fourier 

series also be purely imaginary and odd.

b0=0, b1=-b-1➔ purely imaginary
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Fact 5:
1

4
න
4

𝑥 −𝑡 + 1 2𝑑𝑡 =
1

2

Use Parseval’s relation

➔ 𝑏1
2 + 𝑏−1

2 =
1

2
, 2| b1 |2=1/2,  

➔ b1=j/2 or –j/2

➔determine a0, a1, a-1 using Factor 4

➔Determine 𝑥 𝑡 using Eq.(3.81)

52

• b1=j/2, b-1= –j/2, 

• a1 = 𝑒−
𝑗𝜋

2 b−1= -j b−1= –1/2 

• 𝑥 𝑡 = 2Re 𝑎1𝑒
𝑗𝜋𝑡

2 = −cos(𝜋𝑡/2)

• b1=-j/2, b-1= j/2, 

• a1 = 𝑒
𝑗𝜋

2 b−1 =j b−1 =1/2 

• 𝑥 𝑡 = 2Re 𝑎1𝑒
𝑗𝜋𝑡

2 = cos(𝜋𝑡/2)

53
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54

• The Fourier series representation of a discrete-

time periodic signal is a finite series, as 

opposed to the infinite series representation 

required for continuous-time signals.

• 連續時間信號的傅立葉級數表示是無窮多項
數的，相反的，離散時間信號的傅立葉級數
表示是有限項數的

3.6 Fourier Series Representation of 

Discrete-Time Periodic Signals

3.6.1 Linear Combinations of Harmonically 

Related Complex Exponentials

• A discrete-time signal is periodic with period N

𝑥 𝑛 = 𝑥 𝑛 + 𝑁 3.84

• Fundamental frequency:

𝜔0 = 2𝜋/𝑁

• The set of all discrete-time complex exponential 

signals with period N

∅𝑘 𝑛 = 𝑒𝑗𝑘𝜔0𝑛 = 𝑒
𝑗𝑘

2𝜋
𝑁

𝑛
, 𝑘 = 0,±1,±2,… . 3.85

∅0 𝑛 = ∅𝑁 𝑛
∅1 𝑛 = ∅𝑁+1 𝑛 ⇒ ∅𝑘 𝑛 = ∅𝑘+𝑟𝑁 𝑛 (3.86)

55
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56

• More general periodic sequences: linear combination

of the sequence fk[n].

• Since fk[n] are distinct only over a range of N

successive values of k, the summation need only 

includes terms over this range: k=<N>

𝑥[𝑛] =෍

𝑘

𝑎𝑘 𝜑𝑘[𝑛] =෍

𝑘

𝑎𝑘 𝑒
𝑗𝑘𝜔0𝑛 =෍

𝑘

𝑎𝑘 𝑒
𝑗𝑘(2𝜋/𝑁)𝑛

𝑥[𝑛] = ෍

𝑘=<𝑁>

𝑎𝑘 𝜑𝑘[𝑛] = ෍

𝑘=<𝑁>

𝑎𝑘 𝑒
𝑗𝑘𝜔0𝑛 = ෍

𝑘=<𝑁>

𝑎𝑘 𝑒
𝑗𝑘(2𝜋/𝑁)𝑛

3.6.2 Determination of the Fourier Series 

Representation of a Periodic Signal

• The discrete-time Fourier series representation 

of a periodic signal:

𝑥 𝑛 = ෍

𝑘=<𝑁>

𝑎𝑘∅𝑘[𝑛] = ෍

𝑘=<𝑁>

𝑎𝑘𝑒
𝑗𝑘𝑤0𝑛 = ෍

𝑘=<𝑁>

𝑎𝑘𝑒
𝑗𝑘

2𝜋
𝑁

𝑛

k=0,1,…, N-1

k=3,4,…, N+2

• How to determine ak?

෍

𝑛=<𝑁>

𝑥[𝑛] 𝑒
−𝑗𝑟

2𝜋
𝑁

𝑛
= ෍

𝑛=<𝑁>

෍

𝑘=<𝑁>

𝑎𝑘 𝑒
𝑗(𝑘−𝑟)

2𝜋
𝑁

𝑛

= ෍

𝑘=<𝑁>

𝑎𝑘 ෍

𝑛=<𝑁>

𝑒
𝑗(𝑘−𝑟)

2𝜋
𝑁

𝑛

57

Multiply both sides by                    

and summing over N times 

𝑒−𝑗𝑟(2𝜋/𝑁)𝑛

(3.88)

(3.91)

(3.92)
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• σ𝑛=<𝑁> 𝑒
𝑗(𝑘−𝑟)

2𝜋

𝑁
𝑛

= σ𝑛=0
𝑁−1 𝑒

−𝑗 𝑘−𝑟
2𝜋

𝑁
𝑛

= 
1−[𝑒

−𝑗 𝑘−𝑟
2𝜋
𝑁

𝑛
]𝑁

1−𝑒
−𝑗 𝑘−𝑟

2𝜋
𝑁

= 
1−[𝑒−𝑗 𝑘−𝑟 2𝜋𝑛]

1−𝑒
−𝑗 𝑘−𝑟

2𝜋
𝑁

= 
1−1

1−𝑒
−𝑗 𝑘−𝑟

2𝜋
𝑁

= 0

58

3.6.2 Determination of the Fourier Series 

Representation of a Periodic Signal

• Note that:

෍

𝑛=<𝑁>

𝑒
𝑗𝑘

2𝜋
𝑁

𝑛
= ቊ

𝑁, 𝑘 = 0,±𝑁,±2𝑁,…
0, otherwise

then  we choose k=r

σ𝑛=<𝑁> 𝑥[𝑛] 𝑒
−𝑗𝑟

2𝜋

𝑁
𝑛
= 𝑁𝑎r

𝑎𝑟 =
1

𝑁
σ𝑛=<𝑁> 𝑥[𝑛] 𝑒

−𝑗𝑟
2𝜋

𝑁
𝑛

59

(3.90)

(3.95)
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3.6.2 Determination of the Fourier Series 

Representation of a Periodic Signal

• If we take k: 0→N-1

=>𝑥 𝑛 = 𝑎0∅0 𝑛 + 𝑎1∅1 𝑛 +⋯+ 𝑎𝑁−1∅𝑁−1[𝑛]

if we take k:1→N

=>𝑥 𝑛 = 𝑎1∅1 𝑛 + 𝑎2∅2 𝑛 +⋯+ 𝑎𝑁∅𝑁[𝑛]

but, as we know: ∅0 𝑛 = ∅𝑁 𝑁

therefore: a0=aN

• We conclude that

ak=ak+N

that is , ak is periodic with period N

60

(3.96)

(3.97)

(3.98)

3.6.2 Determination of the Fourier Series 

Representation of a Periodic Signal

• Summary for the DTFS:

𝑎𝑘 =
1

𝑁
෍

𝑛=<𝑁>

𝑥[𝑛] 𝑒−𝑗𝑘𝜔0𝑛 =
1

𝑁
෍

𝑛=<𝑁>

𝑥[𝑛] 𝑒
−𝑗𝑘

2𝜋
𝑁

𝑛

61

𝑥[𝑛] = ෍

𝑘=<𝑁>

𝑎𝑘 𝑒
𝑗𝑘𝜔0𝑛 = ෍

𝑘=<𝑁>

𝑎𝑘 𝑒
𝑗𝑘(2𝜋/𝑁)𝑛

(3.95)

(3.94)
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N=5
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Example 3.10

65

The signal → 𝑥 𝑛 = sin𝜔0𝑛

𝜔0 =
2𝜋

𝑁

𝑥 𝑛 =
1

2𝑗
𝑒
𝑗
2𝜋
𝑁

𝑛
−
1

2𝑗
𝑒
−𝑗

2𝜋
𝑁

𝑛

𝑎1 =
1

2𝑗
, 𝑎−1 = −

1

2𝑗

𝜔0 =
2𝜋𝑀

𝑁
→ 𝑥 𝑛 =

1

2𝑗
𝑒
𝑗𝑀

2𝜋
𝑁

𝑛
−
1

2𝑗
𝑒
−𝑗𝑀

2𝜋
𝑁

𝑛
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Example 3.11

𝑥[𝑛] = 1 + sin(
2𝜋

𝑁
)𝑛 + 3 cos(

2𝜋

𝑁
)𝑛 + cos(

4𝜋

𝑁
𝑛 +

𝜋

2
)

= 1 + sin(
2𝜋

𝑁
)𝑛 + 3 cos(

2𝜋

𝑁
)𝑛 − sin(

4𝜋

𝑁
)𝑛

= 1 +
1

2𝑗
(𝑒𝑗

2𝜋
𝑁
𝑛 − 𝑒−𝑗

2𝜋
𝑁
𝑛) +

3

2
(𝑒𝑗

2𝜋
𝑁
𝑛 + 𝑒−𝑗

2𝜋
𝑁
𝑛) −

1

2𝑗
(𝑒𝑗

4𝜋
𝑁
𝑛 − 𝑒−𝑗

4𝜋
𝑁
𝑛)

= 1 + (
3

2
+

1

2𝑗
)𝑒𝑗

2𝜋
𝑁
𝑛 + (

3

2
−

1

2𝑗
)𝑒−𝑗

2𝜋
𝑁
𝑛 −

1

2𝑗
𝑒𝑗

4𝜋
𝑁
𝑛 +

1

2𝑗
𝑒−𝑗

4𝜋
𝑁
𝑛

𝑎0 = 1 = 𝑎𝑁 = 𝑎2𝑁 = 𝑎3𝑁 =. . . . .

𝑎1 = (
3

2
+

1

2𝑗
) = 𝑎𝑁+1 = 𝑎2𝑁+1 = 𝑎3𝑁+1 =. . ., 𝑎−1 = (

3

2
−

1

2𝑗
) = 𝑎𝑁−1

= 𝑎2𝑁−1 = 𝑎3𝑁−1 =. . .

𝑎2 = −
1

2𝑗
= 𝑎𝑁+2 = 𝑎2𝑁+2 = 𝑎3𝑁+2 =. . ., 𝑎−2 =

1

2𝑗
= 𝑎𝑁−2

= 𝑎2𝑁−2 = 𝑎3𝑁−2 =. . .

67
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Example 3.12 - The discrete-time periodic square wave

𝑥[𝑛] = 1 for − 𝑁1 ≤ 𝑛 ≤ 𝑁1

𝑎𝑘 =
1

𝑁
෍

𝑛=<𝑁>

𝑥[𝑛]𝑒−𝑗𝑘(2𝜋/𝑁)𝑛 =
1

𝑁
෍

𝑛=−𝑁1

𝑁1

𝑒−𝑗𝑘(2𝜋/𝑁)𝑛

Let 𝑚 = 𝑛 + 𝑁1,

𝑎𝑘 =
1

𝑁
෍

𝑚=0

2𝑁1

𝑒−𝑗𝑘(2𝜋/𝑁)(𝑚−𝑁1) =
1

𝑁
𝑒𝑗𝑘(2𝜋/𝑁)𝑁1 ෍

𝑚=0

2𝑁1

𝑒−𝑗𝑘(2𝜋/𝑁)𝑚

=
1

𝑁

sin[ 2𝜋𝑘(𝑁1 +
1
2
)/𝑁]

sin( 𝜋𝑘/𝑁)
, for 𝑘 ≠ 0,±𝑁,±2𝑁, . . .

𝑎𝑘 =
2𝑁1 + 1

𝑁
, for 𝑘 = 0,±𝑁,±2𝑁, . . .

(3.104)

See next page for 

details!

69

𝑎𝑘 =
1

𝑁
𝑒𝑗𝑘(2𝜋/𝑁)𝑁1 ෍

𝑚=0

2𝑁1

𝑒−𝑗𝑘(2𝜋/𝑁)𝑚

=
1

𝑁
𝑒𝑗𝑘(2𝜋/𝑁)𝑁1 ×

1 − 𝑒−𝑗𝑘(2𝜋/𝑁)(2𝑁1+1)

1 − 𝑒−𝑗𝑘(2𝜋/𝑁)

=
1

𝑁

𝑒𝑗𝑘(2𝜋/𝑁)𝑁1 − 𝑒−𝑗𝑘(2𝜋/𝑁)(𝑁1+1)

1 − 𝑒−𝑗𝑘(2𝜋/𝑁)

=
1

𝑁

𝑒𝑗𝑘(2𝜋/2𝑁)[𝑒𝑗𝑘(2𝜋/𝑁)𝑁1 − 𝑒−𝑗𝑘(2𝜋/𝑁)(𝑁1+1)]

𝑒𝑗𝑘(2𝜋/2𝑁) − 𝑒−𝑗𝑘(2𝜋/2𝑁)

=
1

𝑁

𝑒𝑗𝑘(2𝜋/𝑁)(𝑁1+
1
2
) − 𝑒−𝑗𝑘(2𝜋/𝑁)(𝑁1+

1
2
)

𝑒𝑗𝑘(2𝜋/2𝑁) − 𝑒−𝑗𝑘(2𝜋/2𝑁)
=
1

𝑁

2𝑗 sin[ 2𝜋𝑘(𝑁1 +
1
2)/𝑁]

2𝑗 sin( 𝜋𝑘/𝑁)

=
1

𝑁

sin[ 2𝜋𝑘(𝑁1 +
1
2)/𝑁]

sin( 𝜋𝑘/𝑁)
, for 𝑘 ≠ 0,±𝑁,±2𝑁, . . .
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Comparison with continuous-time 

Fourier series

1. There are no convergence issues and 
there is no Gibbs phenomenon with the 
discrete-time Fourier series.

2. Any discrete-time periodic sequence x[n] 
is completely specified by a finite number
N of parameters.

3. The Fourier series analysis simply 
transform this set of N parameters into 
an equivalent set – the values of the N
Fourier series coefficients.
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3.7 Properties of Discrete-Time Fourier Series

• 1. Multiplication:

if

𝑥[𝑛]
𝐹.𝑆.

𝑎𝑘

y[𝑛]
𝐹.𝑆.

𝑏𝑘

then

𝑥 𝑛 𝑦 𝑛
𝐹.𝑆.

𝑑𝑘 = ෍

𝑙=<𝑁>

𝑎𝑙𝑏𝑘−𝑙

72

(3.108)

A periodic convolution between the two periodic 

sequences of Fourier coefficients.

• 2. First Difference:

if

𝑥[𝑛]
𝐹.𝑆.

𝑎𝑘
then

𝑥 𝑛 − 𝑥 𝑛 − 1
𝐹.𝑆.

1 − 𝑒
−𝑗𝑘

2𝜋

𝑁 𝑎𝑘
• 3. Parseval’s Relation:

1

𝑁
෍

𝑛=<𝑁>

𝑥 𝑛 2 = ෍

𝑛=<𝑁>

𝑎𝑘
2

➢ The left-side is the average power in one period of x[n]

➢ The right-side is the average power in all harmonic 

components of x[n]

73

3.7.2 First Difference & 3.7.3 Parseval’s Relation for 

Discrete-Time Periodic Signals

(3.109)

(3.110)
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74

Example 3.13

From Example 3.12(with 𝑁1 = 1 & 𝑁 = 5)
𝑥1 𝑛

→ 𝑏𝑘 =

1

5

sin(3𝜋𝑘/5)

sin(𝜋𝑘/5)
, for 𝑘 ≠ 0,±5,±10,…

3

5
, for 𝑘 = 0,±5,±10,…

𝑥2 𝑛 → only have dc value

→ 𝑐0 =
1

5
෍

𝑛=0

4

𝑥2 𝑛 = 1

→ 𝑎𝑘=
𝑏𝑘 =

1

5

sin(3𝜋𝑘/5)

sin(𝜋𝑘/5)
, for 𝑘 ≠ 0,±5,±10,…

8

5
, for 𝑘 = 0,±5,±10,…

75
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Example 3.14

76

The signal → 𝑥 𝑛 :
1. periodic 𝑁 = 6

2. σ𝑛=0
5 𝑥 𝑛 = 2

3. σ𝑛=2
7 −1 𝑛𝑥 𝑛 = 1

4.  x[n] has the minimum power per period among the set of signals satisfying 
the preceding three conditions

Fact 2: a0=
1

𝑁
σ𝑘=<𝑁> 𝑥[𝑛]=2/6=1/3

Fact  3: 𝑎3 =
1

𝑁
σ𝑘=<𝑁> 𝑥[𝑛] 𝑒

−𝑗3𝜔0𝑛 =

1

𝑁
σ𝑘=<𝑁> 𝑥[𝑛] 𝑒

−𝑗3
2𝜋

6
𝑛

=σ𝑛=2
7 −1 𝑛𝑥 𝑛 /6 = 1/6

Fact 4: 𝑃 = σ𝑘=0
5 𝑎𝑘

2, to minimize the power, let 𝑎1 = 𝑎2 = 𝑎4 = 𝑎5 = 0

𝑥 𝑛 = 𝑎0 + 𝑎3𝑒
𝑗𝜋𝑛 =

1

3
+

1

6
−1 𝑛

77
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Example 3.15

78

𝑥 𝑛 , 𝑦 𝑛 → period 𝑁

The siginal → 𝑤 𝑛 = ෍

𝑟=<𝑁>

𝑥 𝑟 𝑦[𝑛 − 𝑟] → perod of 𝑁 = 7

→ 𝑐𝑘 =
sin2(

3𝜋𝑘
7
)

7 sin2
𝜋𝑘
7

We observe that 𝑐𝑘 = 7𝑑𝑘
2=7dk xdk

→ 𝑤 𝑛 = ෍

𝑟=<7>

𝑥 𝑟 𝑥[𝑛 − 𝑟] = ෍

𝑟=−3

3

𝑥 𝑟 𝑥[𝑛 − 𝑟]

→ 𝑤 𝑛 = ෍

𝑟=−3

3

ො𝑥 𝑟 𝑥 𝑛 − 𝑟 = ෍

𝑟=−∞

+∞

ො𝑥 𝑟 𝑥 𝑛 − 𝑟

79

Example 3.15
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• In continuous time LTI system:

𝑥 𝑡 → ℎ 𝑡 → 𝑦(𝑡)

• From the beginning of Section 3.2, Eq. (3.6)

if 𝑥 𝑡 = 𝑒𝑠𝑡

then 𝑦 𝑡 = 𝐻(𝑠)𝑒𝑠𝑡

where 𝐻 𝑠 = ∞−׬
∞

ℎ(𝜏)𝑒−𝑠𝜏𝑑𝜏

3.8 Fourier Series and LTI Systems

83
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• In discrete-time LTI system:

𝑥[𝑛] → ℎ[𝑛] → 𝑦[𝑛]

From the beginning of Section 3.2, Eq. (3.10)

if 𝑥[𝑛] = 𝑧𝑛

then 𝑦[𝑛] = 𝐻(𝑧) 𝑧𝑛

where 𝐻(𝑧) = σ𝑘=−∞
∞ ℎ 𝑘 𝑧−𝑘

84

Consider the C-T case: s=jw, est=ejwt, H(s)=H(jw)

For D-T case: |z|=1, z=ejw, zn=ejwn, H(z)=H(ejw)

• For 𝑠 = 𝑗𝑤 and 𝑒−𝑠𝑡 = 𝑒−𝑗𝑤𝑡

𝐻 𝒔 = 𝐻 𝒋𝒘 = න
−∞

∞

ℎ(𝑡)𝑒−𝑗𝑤𝑡𝑑𝑡

For 𝑧 = 𝑒𝑗𝑤 and 𝑧𝑛 = 𝑒𝑗𝑤𝑛

𝐻 𝒛 = 𝐻 𝒆𝒋𝒘 = ෍

𝑛=−∞

∞

ℎ[𝑛]𝑒−𝑗𝑤𝑛

85

(3.121)

(3.122) 
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3.8 Fourier Series and LTI Systems

• If x(t) is a periodic signal then the FS representation:

𝑥 𝑡 = ෍

𝑘=−∞

∞

𝑎𝑘𝑒
𝑗𝑘𝑤0𝑡

𝑦 𝑡 = ෍

𝑘=−∞

∞

𝑎𝑘𝐻(𝑗𝑘𝑤0 ) 𝑒𝑗𝑘𝑤0𝑡

y(t) is also periodic with the same fundamental frequency as x(t)

86

Using Eqs. (3-13) and (3-14) 

(p. 7 in PPT) and sk=jkw0

The Fourier series coefficients for y(t)

(3.123)

3.8 Fourier Series and LTI Systems

• If x[n] is a periodic signal then the FS representation:

𝑥[𝑛] = ෍

𝑘=<𝑁>

𝑎𝑘𝑒
𝑗𝑘

2𝜋
𝑁

𝑛

𝑦[𝑛] = ෍

𝑘=<𝑁>

∞

𝑎𝑘𝐻(𝑒
𝑗𝑘

2𝜋
𝑁 ) 𝑒

𝑗𝑘
2𝜋
𝑁

𝑛

y[n] is also periodic with the same fundamental frequency as x[n]

87

Using Eqs. (3-15) and (3-16) 

and zk=ejkw0

The Fourier series coefficients for y[n]

(3.131)
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Example 3.16

𝑥(𝑡) = ෍

𝑘=−3

3

𝑎𝑘𝑒
𝑗𝑘2𝜋𝑡 , where 𝑎0 = 1, 𝑎1 = 𝑎−1 =

1

4
,

𝑎2 = 𝑎−2 =
1

2
, 𝑎3 = 𝑎−3 =

1

3

89

h 𝑡 = 𝑒−𝑡𝑢 𝑡

→ 𝐻 𝑗𝜔 = න
0

∞

𝑒−𝜏𝑒−𝑗𝜔𝜏𝑑𝜏 = −
1

1 + 𝑗𝜔
𝑒−𝜏𝑒−𝑗𝜔𝜏 ቚ

0

∞
=

1

1 + 𝑗𝜔

𝜔0 = 2𝜋 → 𝑦 𝑡 = ෍

𝑘=−3

+3

𝑏𝑘𝑒
𝑗𝑘2𝜋𝑡

𝑏𝑘 = 𝑎𝑘𝐻 𝑗𝑘2𝜋 → 𝑏0 = 1

→ 𝑏1 =
1

4

1

1 + 𝑗2𝜋
, 𝑏−1=

1

4

1

1 − 𝑗2𝜋
,

→ 𝑏2 =
1

2

1

1 + 𝑗4𝜋
, 𝑏−2=

1

2

1

1 − 𝑗4𝜋

→ 𝑏3 =
1

3

1

1 + 𝑗6𝜋
, 𝑏−3=

1

3

1

1 − 𝑗6𝜋
,
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𝑦 𝑡 = 1 + 2෍

𝑘=1

3

𝐷𝑘cos(2𝜋𝑘𝑡 + 𝜃𝑘) = 1 + 2෍

𝑘=1

3

[𝐸𝑘 cos 2𝜋𝑘𝑡 − 𝐹𝑘 sin 2𝜋𝑘𝑡]

𝑏𝑘 = 𝐷𝑘𝑒
𝑗𝜃𝑘 = 𝐸𝑘 + 𝑗𝐹𝑘 , 𝑘 = 1, 2, 3

For example:

𝐷1 = 𝑏1 =
1

4 1 + 4𝜋2
𝜃 = ∠𝑏1 = −tan−1(2𝜋)

𝐸1 = ℜ𝑒 𝑏1 =
1

4 1 + 4𝜋2
𝐹1 = ℑ𝑚 𝑏1 = −

𝜋

2 1 + 4𝜋2

→ 𝑥 𝑛 = ෍

𝑘=<𝑁>

𝑎𝑘𝑒
𝑗𝑘

2𝜋
𝑁

𝑛

→ 𝑦 𝑛 = ෍

𝑘=<𝑁>

𝑎𝑘𝐻 𝑒
𝑗2𝜋𝑘
𝑁 𝑒

𝑗𝑘
2𝜋
𝑁

𝑛

91
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Example 3.17 –p2

Example 3.17
An LTI system with ℎ 𝑛 = 𝛼𝑛𝑢 𝑛 ,−1 < 𝛼 < 1

input → 𝑥 𝑛 = cos
2𝜋𝑛

𝑁
=
1

2
𝑒
𝑗
2𝜋
𝑁

𝑛
+
1

2
𝑒
−𝑗

2𝜋
𝑁

𝑛

𝐻 𝑒𝑗𝜔 = ෍

𝑛=0

∞

𝛼𝑛𝑒−𝑗𝜔𝑛 = ෍

𝑛=0

∞

𝛼𝑒−𝑗𝜔
𝑛

𝐻 𝑒𝑗𝜔 =
1

1 − 𝛼𝑒−𝑗𝜔

Output: 𝑦 𝑛 =
1

2
𝐻 𝑒

𝑗2𝜋
𝑁 𝑒𝑗(

2𝜋
𝑁
)𝑛 +

1

2
𝐻 𝑒−

𝑗2𝜋
𝑁 𝑒−𝑗(

2𝜋
𝑁
)𝑛

=
1

2

1

1 − 𝛼𝑒−𝑗2𝜋/𝑁
𝑒𝑗(

2𝜋
𝑁
)𝑛 +

1

2

1

1 − 𝛼𝑒𝑗2𝜋/𝑁
𝑒−𝑗(

2𝜋
𝑁
)𝑛

Let
1

1 − 𝛼𝑒−𝑗2𝜋/𝑁
= 𝑟𝑒𝑗𝜃 → 𝑦 𝑛 = 𝑟cos

2𝜋

𝑁
𝑛 + 𝜃

If N=4, 
1

1−𝛼𝑒−𝑗2𝜋/4
=

1

1+𝛼𝑗
=

1

1+𝛼2
𝑒− jtan−1 𝛼

⇒ 𝑦 𝑛 =
1

1 + 𝛼2
cos

𝜋𝑛

2
− tan−1 𝛼
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3.9 Filtering

• Filtering:

1. change the relative amplitudes of the frequency 

components in a signal

2. eliminate some frequency components entirely

• Frequency-shaping filters: LTI systems that 

change the shape of the signal spectrum

• Frequency-selective filters: systems that are 

designed to pass some frequencies essentially 

undistorted and significantly attenuate or 

eliminate others

3.9.1 Frequency shaping filters

• An application: audio systems

– The frequency-shaping filters correspond to 

LTI systems whose frequency response can be 

changed by manipulating the tone controls.

– Tone: bass - low frequency energy

treble – high frequency energy

– Equalizing filters are often included in the 

preamplifier to compensate for the frequency-

response characteristics of the speakers

95
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• Another class: for which the filter output is 

the derivative of the filter input.

• 𝑦 𝑡 =
𝑑𝑥 𝑡

𝑑𝑡
, 𝑥 𝑡 = 𝑒𝑗𝑡 , 𝑦 𝑡 = 𝑗𝑒𝑗𝑡

• 𝐻 𝑗 = 𝑗

• A complex exponential input ejt will receive 

greater amplification for large values of .

• Consequently, differentiating filters are 

useful in enhancing rapid variations or 

transitions in a signal.

96

Fig. 3.23

97
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• They are often used to enhance edges in picture 

processing (Fig. 3.24). Because the derivative at the 

edges of a picture is greater than in regions where the 

brightness varies slowly with distance.

98

Differentiation on a 2D Image

P.261

• A simple discrete-time filter (Fig. 3.25), 

considering an LTI system that successively 

take a two-point average of the input values:

𝑦 𝑛 =
1

2
𝑥 𝑛 + 𝑥 𝑛 − 1

ℎ 𝑛 =
1

2
𝛿 𝑛 + 𝛿 𝑛 − 1

𝐻 𝑒𝑗𝑤 =
1

2
1 + 𝑒−𝑗𝑤 = 𝑒−𝑗𝑤/2cos(

𝑤

2
)

99
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• In discrete-time we need only consider a 2

interval of values of  in order to cover a 

complete range of distinct discrete-time 

frequencies.

• Fig. 3.25

100

3.9.2

• Frequency-Selective Filters

1. Low-pass Filter

𝐻 𝑗𝜔 = ቊ
1, |𝜔| < 𝜔𝑐

0, |𝜔| ≥ 𝜔𝑐

101

(3.140)
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3.9.2 Frequency-Selective Filters

2. High-pass Filter & Band-pass Filter

102

103

3.10 Examples of Continuous-Time Filters 

Described by Differential Equations (Skip 

hereafter)

• 3.10.1 A Simple RC Lowpass Filter
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3.10.1 A Simple RC Lowpass Filter

104

Figure 3.29 First-order RC filter.

Constant-coefficient differential equation

𝑅𝐶
𝑑𝑣𝑐(𝑡)

𝑑𝑡
+ 𝑣𝑐 𝑡 = 𝑣𝑠 𝑡 . (3.141)

3.10.1 A Simple RC Lowpass Filter

Assuming initial rest, the system described by eq. (3.141) is LTI. In order to 

determine its frequency response 𝐻(𝑗𝜔), we note that, by definition, with input 

voltage 𝑣𝑠 𝑡 = 𝑒𝑗𝜔𝑡, we must have the output voltage 𝑣𝑐 𝑡 = 𝐻(𝑗𝜔)𝑒𝑗𝜔𝑡. If 
we substitute these expressions into eq.(3.141), we obtain

𝑅𝐶
𝑑

𝑑𝑡
𝐻 𝑗𝜔 𝑒𝑗𝜔𝑡 + 𝐻 𝑗𝜔 𝑒𝑗𝜔𝑡 = 𝑒𝑗𝜔𝑡,                    (3.142)

or

𝑅𝐶𝑗𝜔𝐻 𝑗𝜔 𝑒𝑗𝜔𝑡 + 𝐻 𝑗𝜔 𝑒𝑗𝜔𝑡 = 𝑒𝑗𝜔𝑡,                      (3.143)

from which it follows directly that

𝐻 𝑗𝜔 𝑒𝑗𝜔𝑡 =
1

1+𝑅𝐶𝑗𝜔
𝑒𝑗𝜔𝑡,                                  (3.144)

or

𝐻 𝑗𝜔 =
1

1+𝑅𝐶𝑗𝜔
.                                          (3.145)

105
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3.10.1 A Simple RC Lowpass Filter

The magnitude and phase of the frequency response 𝐻(𝑗𝜔) for 

this example are shown in Figure 3.30. Note that for frequencies 

near 𝜔 = 0, |𝐻(𝑗𝜔)| ≈ 1, while for larger values of 𝜔 (positive or 

negative), |𝐻(𝑗𝜔)| is considerably smaller and in fact steadily 

decreases as |𝜔| increases. Thus, this simple RC filter (with 𝑣𝑐(𝑡)
as output) is a nonideal lowpass filter.

To provide a first glimpse at the trade-offs involved in filter 

design, let us briefly consider the time-domain behavior of the 

circuit. In particular, the impulse response of the system described 

by eq. (3.141) is

ℎ 𝑡 =
1

𝑅𝐶
𝑒 ൗ−𝑡

𝑅𝐶𝑢 𝑡 (3.146)

106

Fig 3.30
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3.10.1 A Simple RC Lowpass Filter

and the step response is

𝑠 𝑡 = 1 − 𝑒−
𝑡

𝑅𝐶 𝑢 𝑡 , (3.147)

Both of which are plotted in Figure 3.31 (where 𝜏 = 𝑅𝐶). Comparing

Figures 3.30 and 3.31, we see a fundamental trade-off. Specifically,

suppose that we would like our filter to pass only very low frequencies.

From Figure 3.30(a), this implies that 1/RC must be small, or equivalently,

that RC is large, so that frequencies other than the low ones of interest will

be attenuated sufficiently. However, looking at Figure 3.31(b), we see that

if RC is large, then the step response will take a considerable amount of

time to reach its long-term value of 1. That is, the system responds

sluggishly to the step input. Conversely, if we wish to have a faster step

response, we need a smaller value of RC, which in turn implies that the

filter will pass higher frequencies. This type of trade-off between behavior

in the frequency domain and in the time domain is typical of the issues

arising in the design and analysis of LTI systems and filters and is a subject

we will look at more carefully in Chapter 6. 108

109

3.10.1 A Simple RC Lowpass Filter
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3.10.2 A Simple RC Highpass Filter
And output is

𝑅𝐶
𝑑𝑣𝑟(𝑡)

𝑑𝑡
+ 𝑣𝑟 𝑡 = 𝑅𝐶

𝑑𝑣𝑠(𝑡)

𝑑𝑡
. (3.148)

We can find the frequency response 𝐺(𝑗𝜔) of this system in exactly the same way we did in 

the previous case: If vs(𝑡) = 𝑒𝑗𝜔𝑡, then we must have 𝑣𝑟 𝑡 = 𝐺(𝑗𝜔) 𝑒𝑗𝜔𝑡; substituting these 

expressions into eq. (3.148) and performing a bit of algebra, we find that

𝐺 𝑗𝜔 =
𝑗𝜔𝑅𝐶

1 + 𝑗𝜔𝑅𝐶
. (3.149)

The magnitude and phase of this frequency response are shown in Figure 3.32. From the 

figure, we see that the system attenuates lower frequencies and passes higher frequencies---

i.e., those for which |𝜔|>>1/RC---with minimal attenuation. That is, this system acts as a 

nonideal highpass filter.

As with the lowpass filter, the parameters of the circuit control both the frequency 

response of the highpass filter and its time response characteristics. For example, consider the 

step response for the filter. From Figure 3.29, we see that 𝑣𝑟 𝑡 = vs 𝑡 − vc(𝑡). Thus, if 

vs(𝑡)=u(t), vc(𝑡) must be given by eq.(3.147). Consequently, the step response of the 

highpass filter is 

vr 𝑡 = 𝑒−
𝑡
𝑅𝐶𝑢 𝑡 , 3.150

Which is depicted in Figure 3.33. Consequently, as RC is increased, the response becomes 

more sluggish---i.e., the step response takes a longer time to reach its long-term value 110

111

3.10.2 A Simple RC Highpass Filter



2023/4/23

56

112

3.10.2 A Simple RC Highpass Filter

3.10.2 A Simple RC Highpass Filter

Analogous first-order differential equations. Because of their 

simplicity, these examples of electrical and mechanical filters do 

not have a sharp transition from passband to stopband and, in fact, 

have only a single parameter (namely, RC in the electrical case) that 

controls both the frequency response and time response behavior of 

the system. By designing more complex filters, implemented using 

more energy storage elements (capacitances and inductances in 

electrical filters and springs and damping devices in mechanical 

filters), we obtain filters described by higher order differential 

equations. Such filters offer considerably more flexibility in terms 

of their characteristics, allowing, for example, sharper passband-

stopband transition or more control over the trade-offs between 

time response and frequency response.

113
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3.11 Examples of Discrete-Time Filters 

Described by Differential Equations

• 3.11.1 First-Order Recursive Discrete-Time Filters

The discrete-time counterpart of each of the first-order filters 

considered in Section 3.10 is the LTI system described by the 

first-order difference equation

𝑦 𝑛 − 𝑎𝑦 𝑛 − 1 = 𝑥 𝑛 . (3.151)

From the eigen function property of complex exponential 

signals, we know that if 𝑥 𝑛 = 𝑒𝑗𝜔𝑛, then 𝑦 𝑛 =
𝐻(𝑒𝑗𝜔)𝑒𝑗𝜔𝑛, where 𝐻(𝑒𝑗𝜔) is the frequency response of the 

system. Substituting into eq. (3.151), we obtain

𝐻(𝑒𝑗𝜔)𝑒𝑗𝜔𝑛 − 𝑎𝐻(𝑒𝑗𝜔) 𝑒𝑗𝜔(𝑛−1) = 𝑒𝑗𝜔𝑛 , 3.152

or

[1 − 𝑎𝑒−𝑗𝜔]𝐻(𝑒𝑗𝜔) 𝑒𝑗𝜔𝑛 = 𝑒𝑗𝜔𝑛, (3.153)
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so that

𝐻 𝑒𝑗𝜔 =
1

1 − 𝑎𝑒−𝑗𝜔
. 3.154

The magnitude and phase of 𝐻(𝑒𝑗𝜔) are shown in Figure 3.34(a) for a=0.6 and in 

Figure 3.34(b) for a=-0.6. We observe that, for the positive value of a, the 

difference equation (3.151) behaves like a lowpass filter with minimal attenuation 

of low frequencies near 𝜔 = 0 and increasing attenuation as we increase 𝜔 to 

toward 𝜔 = 𝜋. For the negative value of a, the system is a highpass filter, passing 

frequencies near 𝜔 = 𝜋 and attenuating lower frequencies. In fact, for any positive 

value of 𝑎 < 1, the system approximates a lowpass filter, and for any negative 

value of 𝑎 > −1, the system approximates a highpass filter, where |a| controls the 

size of the filter passband, with broader passbands as |a| is decreased.

As with the continuous-time examples, we again have a trade-off between 

time domain and frequency domain characteristics. In particular, the impulse 

response of the system described by eq. (3.151) is 

ℎ 𝑛 = 𝑎𝑛𝑢 𝑛 . (3.155)
115
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3.11.1 First-Order Recursive Discrete-Time Filters

The step response 𝑠 𝑛 ∗ ℎ[𝑛] is

𝑠 𝑛 =
1 − 𝑎𝑛+1

1 − 𝑎
𝑢 𝑛 . 3.156

From these expressions, we see that |a| also controls the speed with which the 

impulse and step responses approach their long-term values, with faster responses 

for smaller values of |a|, and hence, for filters with smaller passbands. Just as with 

differential equations, higher order recursive difference equations can be used to 

provide sharper filter characteristics and to provide more flexibility in balancing 

time-domain and frequency-domain constraints.

Finally, note from eq.(3.155) that the system described by eq. (3.151) is 

unstable if |a|≥1 and thus does not have a finite response to complex exponential 

inputs. As we stated previously, Fourier-based methods and frequency domain 

analysis focus on systems with finite responses to complex exponentials; hence, for 

examples such as eq.(3.151), we restrict ourselves to stable systems.

116
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3.11.2 Nonrecursive Discrete-Time Filters

The general form of an FIR nonrecursive difference equation is

𝑦 𝑛 = ෍

𝑘=−𝑁

𝑀

𝑏𝑘𝑥[𝑛 − 𝑘] . (3.157)

That is, the output y[n] is a weighted average of the (𝑁 +𝑀 + 1)
values of x[n] from 𝑥[𝑛 − 𝑀] through 𝑥[𝑛 + 𝑁], with the weights 

given by the coefficients bk. Systems of this form can be used to 

meet a broad array of filtering objectives, including frequency-

selective filtering.

One frequently used example of such a filter is a moving-average 

filter, where the output y[n] for any n---say, n0---is an average of 

values of x[n] in the vicinity of n0.
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3.11.2 Nonrecursive Discrete-Time Filters

Basic idea is that by averaging values locally, rapid high-frequency components of 

the input will be averaged out and lower frequency variations will be retained, 

corresponding to smoothing or lowpass filtering the original sequence. A simple 

two-point moving-average filter was briefly introduced in Section 3.9 [eq. (3.138)]. 

An only slightly more complex example is the three-point moving-average filter, 

which is of the form

𝑦 𝑛 =
1

3
𝑥 𝑛 + 1 + 𝑥 𝑛 + 𝑥 𝑛 − 1 ,

ℎ 𝑛 =
1

3
𝛿 𝑛 + 1 + 𝛿 𝑛 + 𝛿 𝑛 − 1

And thus, from eq.(3.122), the corresponding frequency response is

𝐻 𝑒𝑗𝜔 =
1

3
𝑒𝑗𝜔 + 1 + 𝑒−𝑗𝜔 =

1

3
1 + 2cos𝜔 . 3.159

The magnitude of 𝐻 𝑒𝑗𝜔 is sketched in Figure 3.35. We observe that the filter has 

the general characteristics of a lowpass filter, although, as with the first-order 

recursive filter, it does not have a sharp transition from passband to stopband.
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The three-point moving-average filter in eq.(3.158) has no parameters that can 

be changed to adjust the effective cutoff frequency. As a generalization of this 

moving-average filter, we can consider averaging over 𝑁 +𝑀 + 1 neighboring 

points---that is, using a difference equation of the form

𝑦 𝑛 =
1

𝑁 +𝑀 + 1
෍

𝑘=−𝑁

𝑀

𝑥 𝑛 − 𝑘 . (3.160)

The corresponding impulse response is a rectangular pulse (i.e., ℎ 𝑛 =
1

𝑁+𝑀+1

for −𝑁 ≤ 𝑛 ≤ 𝑀, and h[n]=0 otherwise). The filter’s frequency response is

𝐻(𝑒𝑗𝜔) =
1

𝑁 + 𝑀 + 1
෍

𝑘=−𝑁

𝑀

𝑒−𝑗𝜔𝑘. (3.161)
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The summation in eq.(3.161) can be evaluated by performing 

calculations similar to those in Example 3.12, yielding

𝐻 𝑒𝑗𝜔 =
1

𝑁 +𝑀 + 1
𝑒
𝑗𝜔𝑘

𝑁−𝑀
2

sin
𝜔 𝑀 + 𝑁 + 1

2

sin
𝜔
2

. (3.162)

By adjusting the size, 𝑁 + 𝑀 + 1, of the averaging window we can vary the cutoff 

frequency. For example, the magnitude of 𝐻 𝑒𝑗𝜔 is shown in Figure 3.36 for 𝑁 +

𝑀 + 1=33 and 𝑁 +𝑀 + 1 = 65.
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Nonrecursive filters can also used to perform highpass

filtering operations. To illustrate this, again with a simple 

example, consider the difference equation

𝑦 𝑛 =
𝑥 𝑛 − 𝑥[𝑛 − 1]

2
. 3.163

For input signals that are approximately constant, the value of 

𝑦[𝑛] is close to zero. For input signals that vary greatly from 

sample to sample, the values of y[n] can be expected to have 

larger amplitude. 123
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Thus, the system described by eq.(3.163) approximates a highpass

filtering operation, attenuating slowly varying low-frequency 

components and passing rapidly varying higher frequency 

components with little attenuation. To see this more precisely we 

need to look at the system’s frequency response. In this case, ℎ 𝑛 =
1

2
{𝛿 𝑛 − 𝛿 𝑛 − 1 }, so that direct application of eq.(3.122) yields

𝐻 𝑒𝑗𝜔 =
1

2
1 − 𝑒−𝑗𝜔 = 𝑗𝑒𝑗𝜔/2 sin

𝜔

2
. (3.164)

In Figure 3.37 we have plotted the magnitude of 𝐻 𝑒𝑗𝜔 , showing 

that this simple system approximates a highpass filter, albeit one with 

a very gradual transition from passband to stopband. By considering 

more general nonrecursive filters, we can achieve far sharper 

transitions in lowpass, highpass, and other frequency-selective filters.
124
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Note that, since the impulse response of any FIR system is of finite 

length (i.e., from eq.(3.157), h[n]=bn for −𝑁 ≤ 𝑛 ≤ 𝑀 and 0 

otherwise), it is always absolutely summable for any choices of the bn. 

Hence, all such filters are stable. Also, if N>0 in eq.(3.157), the system 

is noncausal, since y[n] then depends on future values of the input. In 

some applications, such as those involving the processing of previously 

recorded signals, causality is not a necessary constraint, and thus, we 

are free to use filters with N>0. In others, such as many involving real-

time processing, causality is essential, and in such cases we must take 

𝑁 ≤ 0. 125
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Problems

• 3.3, 3.7(3.8 舊版), 3.10, 3.11

• 3.13, 3.14
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