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Chapter 4

The Continuous-Time Fourier
Transform

Introduction

» Apply the concepts for periodic signals to
aperiodic (not periodic) signals.

 The representation takes the form of an
integral rather than a sum.

 The resulting spectrum of coefficients in this
representation is called the Fourier transform

 The synthesis integral itself, which uses these
coefficients to represent the signal as linear
combination of complex exponentials, is
called the inverse Fourier transform,
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4.1 Representation of aperiodic signals:
The continuous time Fourier transform

» 4.1.1 Development of Fourier transform
representation of an aperiodic signal

Revisit Example 3.5
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Figure 4.1 A continuous-time periodic square wave.

1 [t] < Ty
x(8) = {0, T, < |t| <T,
2 Sin( k(l)oTl)

kWOT

period =T

Fourier coefficient a;, =

2sin( wTy)
)

, Wo = 27T/T

Tak = |w = kwy



» With w thought of as a continuous variable,
the function  28™(“T)  yepresents the
envelope of Ta,, and a, are simply equally
spaced sample of this envelope.

» For fixed T4, the envelope of Ta, is
independent of T. As T increases, or
decreases, the envelope is sampled with a

. 2
closer and closer spacing. w, = -

As T-> oo original periodic square wave —> rectangular pulse,
the Fourier coefficients a, = the envelop function.

Tay

Figure 4.2 The Fourier series co-
efficients and their envelope for the
periodic square wave in Figure 4.1 for
several values of T (with Ty fixed):
@ T =4%;(b) T =87 () T =
16T5.
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» An aperiodic signal x(t) is of finite
duration: x(t)=0 if [t}>T,

x(t)

by

-T T t
(a)

i(t)

-T, 0 T, T 2T t
®)

W43 (QFF MMM x(e); b)BNBLEMM (6), x(c) By #() B9—HAM

» We can construct a periodic signal z(t)
with period T and for which x(t) is one
period.

« Figure 4.3(b)

e AsT> oo | x(t)=x(t) forany finite
value of t
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%(t) = Z ay e/k@ot wo uild

Ko T (4.3)

T/2 _

ay = —f %(t) e Tk@otqt

T) 1),
Since X(t) = x(t) for |t| <T/2,

1 (7/2 .
ay = —J x(t) e Jkwotqt

T J_ 1 (4.4)

1 .

= TJ x(t) e Tkwotqt

Define the envelope X(jw) of Ta, as
X(jw) = j x(t) e /®tdt, where w = kw, (4.5)
1 1
@, = ZX(jw) = 7 X (jkwo) (4.6)
> 1 .
%(t) = Z = X (jkawy)elkeot
T
k=—co 4.7)

1 N : Jjkwot 2m
=%RZ X(kwg)e otwy  (+wp =)
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AsT-> oo, wehave ay 2 0 and %(t) - x(o)

1 r® .
x(t) = %f X(jw)e!®t dw (4.8)

X(jw)elt

Area = X(fkwg)e! @y
X(jkwg)e®@ot | —— > /

[~

(k + 1)wg

Figure 4.4 Graphical interpretation
of eq. (4.7).

kayg @

Summary of Fourier Transform

Fourier transform pair:

X(jw) = f X(6) eIt de Fourier transform

(o)

1 . Inverse Fourier
x(t) = Ef X(jw)e!*t dw

transform

The transform X(jw) of an aperiodic signal x(t)
is commonly referred to as the spectrum of x(t)
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« Let x(t) be a finite-duration signal that is
equal to = over exactly one period, sse¢ss+7

 The Fourier coefficients a, of *® are
proportional to equally spaced samples
of the FT of one period of #®

s+T ] s+T ]
ay = Tf %(t) e Jk@otqt = Tf x(t) e Tk@otqt
S S

1= —jkwgt 1 i
= T _oox(t) e otdt = ?X(]a))lamkwo

4.1.2 Convergence of Fourier

Transform

« Again, the Dirichlet conditions are
required.

» Page 290
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4,1.2 Convergence of Fourier Transform
* (1) Square integrable
j lx(t)|?dt < oo (4.11)

* (2) The Dirichlet conditions
> Condition 1: absolutely integrable

] lx(t)|dt < o (4.13)

> Condition 2: finite number of maxima and
minima within any finite interval

> Condition 3: finite number of discontinuities
within any finite interval.

4.1.3 Examples of C-T FT

» Examples 4.1~4.5
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Example 4.1
s 2o |
L _ 2 e
\ré' " h Ko -a a w
{a)
z=x+jy,|z| = <r><(iw)2
1/
r=x-jyld =NE (Y =
= ./x2 2 —— w4
= x4 + Y
y y { ?
4z =tan"1= -a ‘ p
x ot |~
________________ 2 Tt
(b)
x(t) = e_atu(t), a>0 Figure 4.5 Fourier transform of the signal x(f) = &~*u{t), a > 0, consid-
(00

ed in Example 4.1.
o-(atjw)t |°°
0

X(i = —ato—jof e = —
G fe ¢ a+jw

0
1
= —, 0
a+jw
w
i -7 CN — a1
G| = s X () = —tan ™ (D)
J2a2

Example 4.2
Letx(t) = et a>0

QX(]'(U) = f_oooo e—altlg—jwt g4

0 oo
=f e‘”e‘j“’tdt+f e~Mte=jotqe

— 0

1 1
= — + -
a—jw a+jw
_ 2a

a? + w?

ity

Figure #.6 Signal x{f) — & = of Example 4.2.

Hifuh

a £l e

Figure #.7 Fourier transform of the signal considered in Example 4.2 and
depicted in Figure 4.6
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Example 4.3
Now let us determine the Fourier transform of the unit impulse
fr) = df). +14)
Substituting into eq. (4.9) vields
Xjw)=| de “dr= 4.15)

- Theal i, the unit impulse has a Fourier transform consisting of equal contributions at alf
frequencies

Let x(t) = 6(¢t)
substituting into Eq. (4.9)
SX(w) = [ sMe@tdt =1

!

Exampile 4.4 I

_ 1r|t| < Tl
x() = {0, It > T,

Applying Eq. (4.9)2>X(jw) = f_T;l e Jotdt =2

— 4.1/}
x(t) :

sin wTy

as sketc

-1, T,
(a)

X(jo)

~ N\ N
= Uz IS TF
T
(b)

Figure 4.8 (a) The rectangular pulse signal of Example 4.4 and (b) its
Fourier transform.

(b} its

Fi
Fo

10
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Ex 4.4

T,
X(jw) =J e JOtdt
_T1
—_ _i e jwtl T
jw —T;
— __(e jwT, _ erT1)
jw
2 eja)Tl_e—ja)Tl
T w 2j )
2 .
=—sinwT;
w

Example 4.5

.y 1wl <W
X(J‘”)_{O,|w|<w

Using the synthesis equation (4.8), we can determine
2>x(t) = if_w‘jv eiwtde = ot

Tt

A commonly used precise form for the- function is

sin 6
¥ >sinc(p) = 1
2sin le/,ﬂ;TT\ I_ _1 .
= 2T;sinc|— T @
w N T 25in5T =
nwe W WNIA———— T
sin Wt 1
—=—Sinc(— T,WT
mt b4 s a8 /\W’"
- +
¢ Sin (10 WLy J\ S .
W wW
-—T-r:y\ T wt ()
JC Figure 4.9  Fourier transform pair of Example 4.5: (a) Fourier transform for

Example 4.5 and (b} the corresponding time function.
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Observation

 The Fourier transform pair consists of a
function of the form sina6/b0, and a
rectangular pulse =» duality property for

Fourier transform g
RS

sin(m6)

Sinc function: sinc(8) = -

sinc ()

N
B -1 0 M 8 8 Figure 4.10 The sinc function.

2022/6/15
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| 4.2 The Fourier Transform for
Periodic Signals

« The FT of a periodic signal can be constructed
directly from its FS.

» We consider a signal x(t) with F.T. X(jw).
X(jw) =218 (w — wy) (4.21)

1 r® . .
= x(t) = E_[ 26 (w — wy) e/®tdw = el @ot
More generally, if
X(jw) =Y 2mard(w — kwy) (4.22)

+ 0o

_ Jkwgt R
= x(t) = Z age’ ™0 F.S. representation of a

k=0 periodic signal

Example 4.6

Consider again the square wave illustrated in Figure £.1. The Fouricr series coellicients
for this signal are

sin kwnd')

Tk
and the Fourier translorm of the signal is
R 5
~ 2sin kepT
X{jw) = \ ‘—,KJ — 8w — kg,
J 2 7
which is sketched in Figure 4.12 for 7 = 47, In comparison with Figure 3.7(a). the

only differences are a proportionality factor of 27 and the use of impulses rather than a
bar graph.

fjen)
L1 _[1. !’h Y =
—er T I-mTn I0T or t : .
2 2 ¥
Figure 4.1 A continuous-time periodic square wave. 2 .1.2
S - 1 S=ar 1 = ¥

Figure 4.12 Fourier transform of a symmetric periodic sguare wave.

2022/6/15
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Example 4.6

e In Figure 4.1, The Fourier series
coefficients for this signal are

sin kwgTy
Sq) = 0L
k Tk

» And the Fourier transform of the signal is

>X(j0) = TFZ o T 8(w — kwo)

Example 4.7
Tet s
T | jWet -pWet )

The Fourier series coefficients for this si

ax. = 0. k=1 or =1

Thus, the Fourier ransform is as shown in Figure 4.13(x). Similarly, for

the Fourier series coellicients are

ag = 0,

The Fourier transform of this signal is depicted

re 4.13(b). These two transiorms
will be of considerable importance when we an. i

inusoidal modulation systems in

Chapter 8.
Hjeo) i _ J—
) LT =i1Ex = =
= g
|
o wo B
P — J< Y @
2t( / - - ‘(}' -
Xijeo)
T —ax o o o
o}
Figure 4.13 Fourier transforms of (a) x(f) = sinaxt: (b} x(f) = cos wyt.
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Example 4.8

Example 4.7

Let x(t) = sin wyt
Fourier series coefficients for this signal
2>a, = Zij,a_l = _zij’
a, =0,fork#1or —1
X(jw) =2na,0(w — wg)+2ma_,;6(w + wy)

=n/j6(w—wy) —1/f6(w+ wgy)
Similarly, for x(t) = cos wyt
1
9(11 B a_1 B E
a, =0,fork#1or —1
X(jw) =n[d(w — wo)+6(w + wy)]

A signal that we will find extremely uscful in our analysis of sampling systems in Chap-
ter 7 is the impalse train

which is periodic

xif) = > 8 kT)

with period 7, as indicated in Figure 4.14(a). The Fourier series cocf-

ficients for this signal were computed in Example 3.8 and are given by

g = = .. :in.--. ot dp - ;

That is. every Fourier coefficient of the periodic impulse wrain has the same value, U7
Substituting this valuc for a; in eq. (4.22) yields

2wk

Xjw) = = > 8la- =}

Thus. the Fourier transform of a periodic impulse train in the ime domain with pe-
riod 7' is a periodic impulse train in the frequency domain with period 2m/T, as sketched
in Figure 4.14(b). Here again, we sce an illustration of the inverse relationship between
the time and the frequency domains. As the spacing between the impulses in the time

domain (i.e., the period) gets longer, the sps
domain (namely, the fundamental frequenc

g between the impulses in the frequency
cts smaller.

The Fourier transform of a
11111 periodic impulse train in the
Y " time domain with period T
is a periodic impulse train
. in the frequency domain
’ r [ 1 - with period 2x/T.

A | iy

1o
Y
<
4

Figure 4.14 (a) Periodic impulse train: (b) its Fourier transfarm

2022/6/15
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Example 4.8

+ 00
Let x(t) = 6(t — kT),
2.

which is periodic with period T, as indicated in
Figure 4.14. The Fourier series coefficients for this
signal were computed in Example 3.8. and are
given by

1 +T/2

_ 1 jkwgt _l
ax =3 7/ 6 (t)elWo dt—T.

Every Fourier coefficient of the periodic impulse
train has the same value, 1/T.
Substituting this value for a; in Eq. (4.22) yields

X(jw) = 25008 (0 - Z5).

T

4.3 Properties of the Continuous-Time
Fourier Transform

e Linearity:
If
F
x(t) o X(jw)
and
F
y(t) oY (jw)
then
ax(t) + by(t) & aX(jw) + bY jw)

(4.26)

2022/6/15
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« Time shifting:
if
F.T.
x(t) = X(w)
then

x(t — tg) <5 eIt X (jw) | (4.27)
» Conjugation and Conjugate Symmetry:

if
F.T.
x(t) = X(jw)
then
% F.T. %
x )—X (—jw) (4.28)
if x(t) is real, then X(jw) is symmetric; that is:
X(—jw) =X (jw) (4.30)
[Example 4.9] x(t):%xi(t—2.5)+x2(t—2.5) | X
X(t) ,% ‘17 t
15 (b)
1
I | | I . 1 Xolt)
1 2 3 4
(@)
3 E
From [Example 4.4] ©
: 2sin(w/ 2 . 2sin(Bw/ 2
X,(jo) = ZE - x (o - 205012
w @
X (jo) :e_ij,z{sm(a)/2)+25|n(3a)/2)}
w

17



o If x(t) is real and we express X(jw) in rectangular
form as:
X(Jw) =Re{X(w)} + jIm{X(jw)}
=> Re{X(jw)} = Re{X(—jw)}

Im{X(jw)} = —Im{X(—jw)}

o If x(t) is both real and even, then X(jw) is also
real and even.

o If x(t) is real and odd, then X(jw) is purely
imaginary and odd.

Example 4.10

Consider again the Fourier transform cvaluation ol Example 4.2 lor the sigoal x(r) =

e 4l where a = 0. This time we will utilize the symmetry properties of the Fourier
3 3 B NPT

transform to aid the evaluation process.  ~ulH

From Example 4.1, we have

e"“u(t); -
a+ jw

Note that for ¢ == 0, x(#) cquals ¢ “ulr), while for ¢ == 1, a(¢) takes on marror mmage

values, That is

oty = e = e7¥u(1) + e ul(—1)

1 2

= le “u(t) + e“uf ~!]]

= 28We " u(n)}.

Since e M u(f) is real valued, the symmetry properties of the Fourier transform lead us
to conclude that

sty v ofF, 1 ]
Evfe “ult)} ~— 'Zﬂe{ _— | :
| & + @ \
It follows that
; fe
X(jw) = g.m,{ el 4 *(O)——KGw)
| ¢ + JmJ a=+aw Ev{x(t)} -t Re{ X (jw)}

which is the same as the answer found in Example 4.2,

2022/6/15
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Example 4.10

From Example 4.1, we have

F oo
e My (t) ——
a+jw )
Note that for t>0, x(t) equals e=3u(t), while for t<0, x(t)
takes on mirror image values. That is
Sx(t) = e~ = ety (t) + ey (—t)

_ > [e_at”(t) ; eatu(_t)] = 2evfe=tu(t))

Since e=w(t) is real valued, the symmetry properties of
the Fourier transform lead us to conclude that

>Ev{e " Mu(t)}« ’ ‘SRe{ : }

atjw
N 1 ) _ 2a
It follow that X (jw) = 2%e {aﬂ_w} =2
« Differentiation and Integration:
if
F.T.
x(t) = X(jw)
then
d FT.
%x(t) —juX(w) (4.31)

t Fr. 1
f K@) S =X (o) + TX(O0)3(W) | (432)

» Time and Frequency Scaling:
if
F.T.
x(t) = X(w)
then

x(at) A % X (%U) (4.34)

19
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Example 4.11

Let us determine the Fourler ransform X(jw ) of the unit step x(z) = u(r). making use
of eq. (4.32) and the knowledge thar

gl = (1) «— Gljw) = |
Nating that
x(t) = zi7)d

and taking the Fourier transform of both sides, we obtain

i)
X(jw) = M + TGS (W),
w

where we have used the integration property listed in Table 4.1, Since G jw) 1, we
conclude that

1 %
X(jw) = — + mdlw) (4.33)
Jw

Observe that we can apply the differentiation property of ¢q. (4.31) t recover the
transform of the impulse. That is.

du(ty ¥ . [ 1 :
&) = Qull) — jw|— + 7o) = 1,
di L Jo 1

where the last equality follows from the fact that wé(w) — O

| s <07
(S‘(-W):i(;—_.:__%go ;‘92 e

A‘WICS(.LU)

Example 4.11

Let us determine the Fourier transform X(jw) of the unit
step x(t)=u(t), making use of eq.(4.32) and the knowledge
7:'
g() =6()—G(w) =1
Noting that

ﬂ®=f g(@dr

And taking the Fourier transform of both sides, we obtain

X(jw) = (’ )+nG(O)6(w)

Since G(ja)):19X(]a)) = _— + 7T5(a)) ——— —(4.33)

Apply Eq. (1.31)>6(t) = du(t)

Jw [— + nd(a))] 1

20



Example 4.12
Suppose that we wish to calculate the Fourier fransform X(jw ] for the signal x(s) dis-
played in Figure 4.16(a). Rather than applying the Fuurier integral directly to x{r), we
instead consider the signal

x(t)

As illustrated in Figure 4. 16(b}. g(r} is the sum of a rectangular pulse and two impulses.
The Fourier translorms of cach of these component signals may be determined from

Table 4.2: T Ly
Gjw) ( D) 2 2 5 "
'L
J

Note that G(0) = 0. Using the integralivn property, we uhmm a
X(jw) .4— TGS ( ) Z( )W)
’ ” e + &
With G(0) = 0 this becomes Z
. 2sinw 2eosw 3
X{jw) 2 - "
’ =/ — (nS

The (xprt,aslon for X( jw} 1s purely imaginary and odd., which 1s wmmvﬂ}’t{ ith the fact
that x(r) is real and odd.

Example 4.12

As illustrated in Figure 4.16(b), g(t) is the sum of a rectangular

‘pulse and two impulses.

2sinw ) )
G(jw) = (———) —/* —e

Note that G(0)=0. Using the integration property, we obtain

X(jw) = (] )+nG(O)5(w)

With G(0)=0, this becomes _
(i 2sinw 2 e/¥ +e7I® _ 2sinw  2cosw
Vo)== %2 )7 jw

2022/6/15
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4.3.5 Time and Frequency Scaling

If X(t) <2 X (jw). X(t):i!jjx(jw)ejadw

thensince  F{x(at)}= f“’ x(at)e “dt
after substituting at by =

L[ x@)e @ dr, a0
Hx(at)p=12

—lj'mx(r)e"'(“”a)fdr, a<o0
a‘s—>

x(at) s x (1)
|a|

X(—t) I X (- jo) (time reversal property)

22
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‘ 4.3.6 Duality ‘

(1) Duality for Transform Pairs
X (jt)«Io27x(-w)

=X (jt) T x(-0)

In summary, if x(t)«"—X(jo) , then

X4 (jo)

X(1) o (jo)

X4 (jos)

x(t) Xolja)

-W w w

Figure 4.17 Relationship between the Fourier transform pairs of egs. (4.36)
and (4.37).

23



Example 4.13

Let us cansider using duality to find the Fourier translorm G je) of the signal

2

g = 2.
ST e

In Example 4.2 we encouniered a Fourier transform pair in which the Fourier transiorm,
as a function of w, had a form similar to that of the signal x(z). Specifically, suppose we
consider a signal x(7) whose Fourier transform is

X(jw) =

5ol ] ,,)/>< ) =

xH=e “'—‘)&Uu«) =

Then, from Example 4.2, l
6> —+w

1 +

The synthesis equation for this Fourier rransform pair ts

L (5 22

:u i dew
Muluplying this equation by 257 and rcpl acing ! by —1. we obtain

—— |e™"dw.
1 Fol)

7-—91_‘

Now, interchanging the names of the variables £ and e, we find that

o

je it (4.38)

Irr‘*‘J—| ( -
A1+

The nghi-hand side of ¢q. 14,38 1s the Fourier transiorm analysis equation for 2/(1 + ),
and thus, we cenclude that

g2 ] = apelw
! 1+2] 7

Example 4.13

Let us consider using duality to find the Fourier
transform G (jw) of the signal
t)=——
9 1+ t2
In Example 4.2
DX (jw) = —

1+w?
T _
2>x(t) =e <—>X(]a)) 1+w2
The synthesis equation for this Fourier transform pair is
eIt = L (@ ( 2 )ej“’tda)

21 1+w?
t>-t D 2meltl = [% (1+2w )e‘j“’tda)
t>0 > 2melol =7 ( 2 )e‘f“’tdt

SF(L)ameel

1+t2

2022/6/15
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o IfX(jw) = fjooox(t)e_j“’tdt

then
dX(jw) « .
= —j —Jjwt 4,

T f_oo jtx(t)e dt (4.39)

that is:
FTdX(j
—jtx(t) & (o) (4.40)

similarly:

. FT
e/ Ptx(t) o X((w—wy)) | (4.41)

1 Fr (¥
KO+ m O [ Xdn | (442)

4.3.7 Parseval’s Relation

e Parseval’s Relation:
If

F.T.
x(t) = X(jw)
then

5 1x@Pdt=o= 721X () Pdo | (443)

25



(Proof)

[ Ixf de= [ x)x et
[0 X G0 o
L[ o

1 oo o 0
= 1X(io) do

Example 4.14
For each ol the Fourier transforms shown in Figure 318, we wish 10 ¢valuate the 7o
ing timc-domain expressions: L/IJ ‘—t

lxws)"dr
!

M
|

b= S _ ’t:o/ 2. =)

Figure 3.18 The Fourier transforms cansidered in Exampie 4.14

Fo evaluaie £ in the frequency 4

zarseval’s relation. That :s.

s te ¢ for Figure 4.18(a) and to lfolFQ|e4ll>\o,|
Tuate £ in the 1 requency domain, we first use the differentiation property 10

o
s

Noting thas k,‘”) Ao
e f St 7:. 5 w\f\m

we conclude:

2(5) — X)) —— jOX(jw) = Giljw).

2022/6/15
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Example 4.14
For each of the Fourier transforms shown in Fig. 4.18, we wish
to evaluate the following time- domain expressions:
E = f Ix(£)|2dt, D= —x(t) |
To evaluate E, we may use Parseval’s relatlon. That is

E= %f_le(jw)lzdw e ee e e o (4.44)

To evaluate D in the frequency domain, we first use the
differentiation property to observe that

d FT .
g() = Ex(t%—vwX(/w) =G(jw)

Noting that>D = g(0) == [ G(@)dw ......... ... (4.45)
We conclude>D = [* jwX (j@)dw .. oo v oo (4.46)
Fig. 4.18(a)

= /fjwv) A
f_9/ji\/glw +fw /D(w

:z\/; th_{( w/ ‘/‘7T—“W/ j

0.8

- 50\5-14-5 4 I
27 4~ z
[ R4 -5

ze I T Ty ox

2022/6/15
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Figure 4.18(a)

Fig. 4.18(b)

E- T;_LJ |X(8w\\lﬂtw

] (e (i)
2|

T2

| _
= &Er-kjt} = Sx [/%(
p=g J, wXp
&t °_ —w dw ¥ . ,LWM\)}Z =
:Zﬂi{j| e 50&, ZJ;]L%

28



2022/6/15

4.4 The Convolution Property

e For an LTI system:

x() —  wiE —— Y

=>y(t) = x(t) * h(t)
= [ x(©h(t — 7)dr

Y(jw) = F{y(t)}
= [Z[J7 x(Dh(t - D)dt]e/tdt  (4.53)

= [0 x@[[" h(t — e @tdt]|dr (4.54)
{ |
»

= H(jw) f_oooo x(t) e 7%z (4.55)
=H(w) X(jw)

Qummary'
P(t) = x(t) * h(t) S Y (jw) = Hjw)X(jw)
(4.56)

29



Cascade of two LTI systems:

Y(jw) = h(jw)Hz(jw) = Hi(jw)Hz (jo)X (jw)

x{t) 1 Hy(jw) > H(jw) > y(t)
@

X(t) e H jen)H,(j ) y(t)
(b)

x(t) > Hyljw) Hy(jw) f——>- vty Figure 4.19  Three equivalent LTI
systems. Here, each block represents
an LTI system with the indicated

© frequency response

Examples 4.15~4.20

2022/6/15
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Example 4.15

 Consider a continuous-time LTI system with
impulse response

2h(t) =8t —ty) e veeeee vee e ... (4.58)
* The Fourier transform of h(t)
SH(w) =e /@ ... ......(459)

« For any input x(t) with Fourier transform X (jw),
the Fourier transform of the output is

S>Y(jw) = Hjw)X(jw) = e 7 X(jw) ... (4.60)

« This result, in fact, is consistent with the time-
shift property of Section 4.3.2. Specifically, a
system for which the impulse response is
&(t — ty) applies a time shift to the input —

o thatis =2y(t) = x(t —ty)

Example 4.16

As a second example, let us examine a
differentiator—that is, an LTI system for which
the input x(t) and the output y(t) are related by

dx(t
Sy ==

From the differentiation property of Section
4.3.4

2Y(w) =joX(w) ... ... ... (4.61)
Consequently, from Eq. (4.56), it follows that
the frequency response of a differentiator is

2H(jw) =jw

2022/6/15
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Example 4.17

Consider an integrator—that is, an LTI system specified by the
equation Y Xy ’”X@ ) 0

t i\ = f— [{EY)
>y(@) = [ x()dt | e S 2

The impulse response for this system is the unlt step u(t), and
therefore, from Example 4.11 and Eq. (4.33), the frequency
response of the system is

SH(jw) = Jiw + 8 (w)
Then using eq. (4.56), we have
2Y(jw) = Hjw)X(jw)

= jin(ja)) + 1X(jw)d(w)

1
= j_a)X(jw) + X (0)5(w)
which is consistent with the integration property of Eq. (4.32).

Example 4.18

« As we discussed in Section 3.9.2, frequency-selective
filtering is accomplished with an LTI system whose
frequency response H(jw) passes the desired range of
frequencies and significantly attenuates frequencies
outside that range.

» For example, consider the ideal lowpass filter
introduced in Section 3.9.2, which has the frequency
response illustrated in Figure 4.20 and given by

L1 ol < o
PH(jw) = 0, lw|> w,
» Now that we have developed the Fourier transform

representation, we know that the impulse response h(t)

of this ideal filter is the inverse transform of eq. (4.63).
Using the result in Example 4.5, we then have

Sh(t) =22 (464)
which is plotted in Figure 4.21.
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H(jw)

—we 0 wg ™)
-—Stopband —+~ Passband Stopband —

Figure 4.20 Frequency response of an ideal lowpass filter.

o~~~ I\ VAN

= g 7 \Al 1/4\/ g ~~ — i
W g .

Figure 4.21 Impuise response of an ideal lowpass filter.

From Example 4.18, we can begin to see some of the
issues, that arise in filter design that involve looking in
both the time and frequency domains.

In particular, while the ideal lowpass filter does have
perfect frequency selectivity, its impulse response has
some characteristics that may not be desirable.

First, note that h(t) is not zero for t < 0. Consequently, the
ideal lowpass filter is not causal, and thus, in applications
requiring causal systems, the ideal filter is not an option.
Moreover, as we discuss in Chapter 6, even if causality is
not an essential constraint, the ideal filter is not easy to
approximate closely, and non-ideal filters that are more
easily implemented are typically preferred.

Furthermore, in some applications (such as the
automobile suspension system discussed in Section 6.7.1),
oscillatory behavior in the impulse response of a lowpass
filter may be undesirable.
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In such applications the time domain characteristics
of the ideal lowpass filter, as shown in Figure 4.21,
may be unacceptable, implying that we may need to
trade off frequency-domain characteristics such as
ideal frequency selectivity with time-domain
properties.

For example, consider the LTI system with impulse
response

Sh(t) = e tu(t) v v e o (4.65)
The frequency response of this system is
N1
DQH(jw) = T (4.66)

1
DA
|
1 i
1 L T
s 1
(b)

Figure 4.22 (a) Impulse response of the LTI system in eq. (4.65):
(b) magnitude of the frequency response of the system.

2022/6/15
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Example 4.19

Consider the response of an LTI system with impulse
response

>h(t) = e *u(t), a>0

To the input signal

>x(t) = e Pu(t), b>0

Rather than computing y(t) = x(t) * h(t) directly, let us

transform the problem into the frequency domain. From

Example 4.1, the Fourier transforms of x(t) and h(t)

are2>X(jw) = L H(jw) = a+1jw

b+jw’

1

Therefore, 2 Y(]a)) = m e e

e (4.67)

» To determine the output y(t), we wish to obtain the
inverse transform of Y (jw). This is most simply done
by expanding Y (jw) in a partial-fraction expansion.

+ Such expansions are extremely useful in evaluating inverse
transforms

¢ The general method for performing a partial-fraction
expansion is developed in the appendix.

» For this example, assuming that b + a, the partial

fraction expansion for Y (jw) takes the form
A B

SY(jw) = e (4.68)

a+jw b+jw

2022/6/15
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Where A and B are constants to be determined. One way to find
A and B is to equate the right-hand sides of Eqs. (4.67) and (4.68),
multiply both sides by (a + jw)(b + jw), and solve for A and B.

1=A(b+jw)+B(atjw),
Ab+Ba=1, ja(A+B)=0 & B=—A, A(b-a)=1,
We find that>A = —— = —B

—-a
R S 1
R a+jo b+jo|’

e e (4.69)

The inverse transform for each of the two terms in Eq. (4.69) can
be recognized by inspection. Using the linearity property of
Section 4.3.1, we have

> y() = = [e™u(t) — e™tu(t)]

When b = a, the partial fraction expansion of Eq. (4.69) is not
valid. However, with b = a, Eq. (4.67) becomes

> Y(jw) = —— = j— ||

(a+jw)? ]E a+jw

We can use the dual of the differentiation property, as given in
Eq. (4.40). Thus,

e_atu(t)(—)a+ jw
> - ! > y(t) = te~%u(t)
te~%u(t) Py ]= !
J dw Lla+jw (a+jw)?

2022/6/15
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Example 4.20

As another illustration of the usefulness of the
convolution property, let us consider the
problem of determining the response of an ideal
lowpass filter to an input signal x(t) that has the
form of a sine function. That is

éx(t) _ sin w;t

Tt
Of course, the impulse response of the ideal
lowpass filter is of a similar form, namely,

9h(t) _ sin wt

tt
The filter output y(t) will therefore be the
convolution of two sinc functions, which, as we
now show, also turns out to be a sinc function.

A particularly convenient way of deriving this result is to first
observe that

2>Y(jw) = X(jw)H(jw)

N1 o] £ w; .y 11, o] £ w,
(X(]a)) |0, elsewhere’ H(jw) = {0, elsewhere
1, lw]| < wy
0, elsewhere

where wy is the smaller of the two numbers w, and w;.
Finally, the inverse Fourier transform of Y (jw) is given by

sin w,t

Dy(6) =1 gn.

sin w;t

>Y(jw) =

, fwe < w;
— ifw; < w,

That is, depending upon which of w, and w; is smaller, the
output is equal to either x(t) or h(t).

I

%DZ;IZI_,W
—wi-up Pw, (

>
> e A0 W, W
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4.5 The Multiplication Property

T. 1
r(©) = s(OP(©) S R(w) = 5-[S(w) * P(j)]

(4.70)

Example 4.21

Determine the F. T. of r(t) = s(t)p(t), where
s(t) Pl S(w) and p(t) = cosw,t.
p(t) = cosw,t = %(ej“)ot + e /@)
P(jw) = nd(w — wy) + mé(w + wy)
R(jw) = 5= [S(jw) * P(jw)]
= %S(j(a) —wy)) + %S(j(w + w,))

R(jw) = 21—1‘ S(iw)  Pljo)]

2022/6/15
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Example 4.22

» Let us now consider r(t) as obtained in Example 4.21, and let
29() =r(®)p(t)
where, again, p(t) = cos wyt. Then, R(jw), P(jw), and
G (jw) are as shown in Figure 4.24.

e From Figure 4.24(c) and the linearity of the Fourier transform,
we see that g(t) is the sum of (1/2)s(t) and a signal with a

spectrum that is nonzero only at higher frequencies (centered
around :+2w,).

R(jw) G(jw)
1 A2 A4 M A
JN, [T N e, >
“wp . —2wg —wy wy 2w
(@ ©
ol Pliw) - Figure 4.24 Spectra of signals considered in Example 4.22: (a) R(jw):
I I (b) Pljw); (€) Giljw).

(b)

« Suppose then that we apply the signal g(t) as the input to a
frequency-selective lowpass filter with frequency response
H(jw) that is constant at low frequencies (say, for |w| < w;)
and zero at high frequencies (for |w| > w,).

e Then the output of this system will have as its spectrum
H(jw)G(jw), which, because of the particular choice of
H(jw), will be a scaled replica of S(jw). Therefore, the
output itself will be a scaled version of s(t).

G(jw) / H(]w)
A4 /ﬁ A4 S(jw)
/I\ A’ .1 4
—2wg —wy Wy 2wy d | h.
© =

Figure 4.24 Spectra of signals considered in Example 4.22: (a) A(jw):
(b) P(jw); (c) G(jw).
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Example 4.23

sin(t)sin(%) 5

e What is the F. T. of x(¢t) =

it

x(©) = T

t s

X(jw) zi'ﬂ'F{Sint}*F{

2T Tt Tt
M
A J

LB 7 @ 2 —> = 3
X(jw)
1/2
/l_x
3 1 1 3 ©
2 2 2 2

Figure 4.25 The Fourier transform of x(t) in Example 4.23.
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4.5.1 Frequency-Selective Filtering
with Variable Center Frequency

* Figure 4.26

e've Ideal lowpass gt
filter
H(jw)
t 1 wi(t
x(t) () a_, LA > ()
—Wwq 0)0 w
Figure 4.26 Implementation of a(bandpass filter)using amplitude modula-
tion with a complex exponential carrier,
X(juo)
m (.5‘0)
w
Y(io X (y(w-499)
Frequency response of ‘——1- —-——n
ideal lowpass filter “‘H‘ \/—\/\
1 ]
/ t |

—wg wp g w
Wije)

—wg wy w
F( jw)
L,

i
[ - | ‘ " Figure 4.27  Spectra of the signals

(g mwg) (e = wg) in the system of Figure 4.26.
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—wg
2(.1)0—-)—

©  Figure 4.28 Bandpass filter equiva-
lent of Figure 4.26.

Figure 4.29 Spectrum of Re{f(t)}
associated with Figure 4.26.

A
1M\
/1\1 |
o] o
H(jw)
9
2
| |
¢ e
-—2m0—> <-20)0—>1

Figure 4.30 Equivalent bandpass
filter for Re{f(#)} in Figure 4.29.

4.6 Tables of Fourier Properties and of Basic
Fourier Transform Pairs

TABLE 4.1 PROPERTIES OF THE FOQURIER TRANSFQRM

Section Property Aperiodic signal Fourier transform
x(1) O X(w)
¥n Y{jw)

4.3.1 Linearity ax(t) + by(n) aX(jw) + bY(jw)

432 Time Shifting x{(t — tg) e X (jw)

436 Frequency Shifting e/ x(1) X(jlw — wop))

433 Conjugation X X'(—jw)

435 Time Reversal x(—1) X(—jw)

4353 Time and Frequency x(ar) ﬁX (13’-)

Scaling “ a

4.4 Convolution x(t) * y{t) X{(jw)Y(jw)

4.5 Multiplication x(D)y(t) fl'q;XU“') * Y(jw)

434 Differentiation in Time %x(r) JjoX(jw)

434 Integration J x(n)dt j%X(jw) + wX(0)8(w)

43.6 Differentiation in (1) j%X(jw)

Frequency

P
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433

433

433

433

Conjugate Symmetry
for Real Signals

Symmetry for Real and
Even Signals

Symmetry for Real and
0Odd Signals

Even-Odd Decompo-
sition for Real Sig-
nals

x(t) real

x(1) real and even
x(t) real and odd

X(r) = &v{x()}  [x(r) real]
X,(r) = Od{x(1)} [x(r) real]

X(jw) = X*(~ jw)

RefX(jw)t = RefX (- jw)}

In{X(jw)t = ~Im{X(~ jw)}

[X(ew)| = |X(— jo)|

EX(jw) = —<LX(~ jw)
X(jw) real and even

X(jw) purely imaginary and odd

Re{X(jw)}
JImiX(jw)}

Parseval’s Relation for Aperiodic Signals

!m [x(n)Pdt =

pr Aperiodic S
= j X(jw)Pdew

L= 8 - %8 BASIC FOURIER TRANSFORM PAIRS

Fourier series coefficients

Signal Fourier transform (if periodic)
Z age’* 27 Z a;8(w — kwy) a;
k= k=
jargt " a =1
e 27 (w — wy) i
a, = 0, otherwise
ag=a,=1>
cos wt 7[d(w — wg) + 6w + wy)] : R
a; = otherwise
= — =1
sinwnl E [8((0 wg) 8(0) + 0)0” % = 2 .
J a;, = 0, otherwise
a=1 a=0 k#0
x(n) =1 27 d(w)

any choice of T > 0

(lhis is the Fourier series representation fur)

Periodic square wave
I, <y
=10 1<l =]
and .
x(t+T) = x(1)

k

k

Z 2 sin kw, T o~ s
T — 0

km

woT, . (kw'.T.) sin kwo T
e | ——]w

(followed by the next page)

2022/6/15
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- - 2m = 2wk
.Z. &(t — nT) T sz 8 (w T) a; = T for all k
Jl!}[ 1, j<T, 2sinwT), -
0, |f=T, ®
sin Wt . . wl =W
X - —
t o) {o_ | > W
a(r) 1 -
1
u(r) — + 7 d(w) —
Jjw
6” -— lf") e'iwln —
) 1
e “u(r), Refa} = 0 — _
a+ jo
te " u(r), Refa} > 0 !
! (a + jw)’ o
tn—l o
g 1
(n—1)! e u(), - —
(a + jw)"
Rela) = 0

4.7 Systems Characterized by Linear Constant-

Coefficient Differential Equations

- o Linear constant-coefficient differential equation

N
IfY(w) =H(w)X(w)
Y(jw)

ﬁH(]'a))=m

K M
dy(t) )
Y gk T

drx ()
ko dtk

(4.72)

(4.73)
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and then:

. { d"}’(t)} {i "x(t)} 474
MPTE “dtk (74

dk d*
. Z { y(t )} _ 2 bkF {%} (4.75)

= Z a,(jo)kY (jw) = Z b, (jw)*X(jw)
k=0 k=0

N

= Y(jw) [Z a,(jw)*

k=0

= X(jw)

i bk(jw)k‘
k=0

Y(jw) _ Yie—o by Gw)*

= HU®) = 300y = IV a,Gao)F

(4.76)
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Example 4.24

Consider a stable LTI system characterized by the
differential equation ALY AOTE X(fw)/f(y““a ram

2L 1 ay(r) = x(0). (4.77)
with a>0. From Eq (4.76), the fretm}m/response IS
H(jw) = ~ (4.78)

jw+a’

Comparing this with the result of Example 4.1, we
see that Eq. (4.78) is the Fourier transform of e-2tu(t).

The impulse response of the system is then
recognized as

h(t) = e~ *u(t).

Example 4.25
ayM Ay .o ax()
- +4 ot +3y(t) =——= ot +2x(t)

Taking F{ }, one obtains

Y (Gw)(Gw)? +4Gw) +3] = X(w)(w+2)

i jw)+2
H (jo) = — U2+
(jo)" +4(jo)+3
H(jo)= jo+2 1 . 3
(Ja)+1)(1a)+3) ja)+1 Ja)+3
Impulse D P
response h(t) ==e'u(t) +=eu(t)
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Example 4.26

o Ifx(t) = e_tu(t)’ﬁX(}V@‘-ﬁ
Y(jw) =H(w)X(w)

_[ jow+2 ][ 1 ]_ jw+2
T Lyo+Do+3)] o+l Go+1)2(w+3)

* The partial fractiolrllal exparjjion tak?; the form
y(jw) = ja):-ll + (ja)-}-zl)2 jwi—l3 '
where A;;, A;,, and A,, are constants to be
determined.
A=1/4, A,=1/2, and A,,=1/4
With the inverse Fourier transform,

y(t) = [le_t +lte_t + 1e‘3t]u(t)
4 2 4 '

Homework

» Basic problems:
°4.1,4.3,4.4,4.10,4.12,4.13,4.14,4.15

« 4.33,4.37(a), (b), 4.38
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