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Chapter 4

The Continuous-Time Fourier 

Transform

Introduction

 Apply the concepts for periodic signals to 
aperiodic (not periodic) signals.

 The representation takes the form of an 
integral rather than a sum.

 The resulting spectrum of coefficients in this 
representation is called the Fourier transform.

 The synthesis integral itself, which uses these 
coefficients to represent the signal as linear 
combination of complex exponentials, is 
called the inverse Fourier transform.
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4.1 Representation of aperiodic signals: 

The continuous time Fourier transform 

 4.1.1 Development of Fourier transform 

representation of an aperiodic signal 

Revisit Example 3.5

𝑥(𝑡) = ቊ
1, |𝑡| < 𝑇1
0, 𝑇1 < |𝑡| < 𝑇2

period = 𝑇

Fourier coefficient 𝑎𝑘 =
2 sin( 𝑘𝜔0𝑇1)

𝑘𝑤0𝑇
, 𝜔0 = 2𝜋/𝑇

𝑇𝑎𝑘 =
2 sin(𝜔𝑇1)

𝜔
ห𝜔 = 𝑘𝜔0
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 With 𝜔 thought of as a continuous variable, 

the function                        represents the 

envelope of Tak, and ak are simply equally 

spaced sample of this envelope.

 For fixed T1, the envelope of Tak is 

independent of T. As T increases, or                   

decreases, the envelope is sampled with a 

closer and closer spacing. 

2 sin(𝜔𝑇1)

𝜔

𝜔0 =
2𝜋

𝑇

As T→ original periodic square wave → rectangular pulse, 

the Fourier coefficients ak→ the envelop function.
∞
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 An aperiodic signal x(t) is of finite 

duration: x(t)=0 if |t|>T1

 We can construct a periodic signal        

with period T and for which x(t) is one 

period.

 Figure 4.3(b)

 As T→ ∞ ,                     for any finite 

value of  t

෤𝑥(𝑡) = 𝑥(𝑡)

෤𝑥(𝑡)
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෤𝑥(𝑡) = ෍

𝑘=−∞

∞

𝑎𝑘 𝑒
𝑗𝑘𝜔0𝑡, 𝜔0 =

2𝜋

𝑇

𝑎𝑘 =
1

𝑇
න
−𝑇/2

𝑇/2

෤𝑥(𝑡) 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡

Since ෤𝑥(𝑡) = 𝑥(𝑡) for |𝑡| < 𝑇/2,

𝑎𝑘 =
1

𝑇
න
−𝑇/2

𝑇/2

𝑥(𝑡) 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡

=
1

𝑇
න
−∞

∞

𝑥(𝑡) 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡

(4.3)

(4.4)

(4.5)

(4.6)𝑎𝑘 =
1

𝑇
𝑋(𝑗𝜔) =

1

𝑇
𝑋(𝑗𝑘𝜔0)

෤𝑥(𝑡) = ෍

𝑘=−∞

∞
1

𝑇
𝑋(𝑗𝑘𝜔0)𝑒

𝑗𝑘𝜔0𝑡

=
1

2𝜋
෍

𝑘=−∞

∞

𝑋(𝑗𝑘𝜔0)𝑒
𝑗𝑘𝜔0𝑡𝜔0 (∵ 𝜔0 =

2𝜋

𝑇
)

Define the envelope X(jw) of Tak as

𝑋(𝑗𝜔) = න
−∞

∞

𝑥(𝑡) 𝑒−𝑗𝜔𝑡𝑑𝑡, where 𝜔 = 𝑘𝜔0

(4.7)
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As T→ ∞ , we have w0 → 0  and ෤𝑥(𝑡) → 𝑥(𝑡)

𝑥(𝑡) =
1

2𝜋
න
−∞

∞

𝑋(𝑗𝜔)𝑒𝑗𝜔𝑡 𝑑𝜔 (4.8)

Summary of Fourier Transform

𝑥(𝑡) =
1

2𝜋
න
−∞

∞

𝑋(𝑗𝜔)𝑒𝑗𝜔𝑡 𝑑𝜔

𝑋(𝑗𝜔) = න
−∞

∞

𝑥(𝑡) 𝑒−𝑗𝜔𝑡𝑑𝑡

Inverse Fourier 

transform

The transform X(jw) of an aperiodic signal x(t) 

is commonly referred to as the spectrum of x(t)

Fourier transform pair:

Fourier transform
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 Let x(t) be a finite-duration signal that is 

equal to        over exactly one period, 

 The Fourier coefficients ak of         are 

proportional to equally spaced samples 

of the FT of one period of 

෤𝑥(𝑡)

෤𝑥(𝑡)

෤𝑥(𝑡) 𝑠 ≤ 𝑡 ≤ 𝑠 + 𝑇

𝑎𝑘 =
1

𝑇
න
𝑠

𝑠+𝑇

෤𝑥(𝑡) 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡 =
1

𝑇
න
𝑠

𝑠+𝑇

𝑥(𝑡) 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡

=
1

𝑇
න
−∞

∞

𝑥(𝑡) 𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡 =
1

𝑇
𝑋(𝑗𝜔)|𝜔=𝑘𝜔0

4.1.2 Convergence of Fourier 

Transform 
 Again, the Dirichlet conditions are 

required.

 Page 290
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4.1.2 Convergence of Fourier Transform 

 (1) Square integrable

න
−∞

∞

𝑥 𝑡 2𝑑𝑡 < ∞ (4.11)

 (2) The Dirichlet conditions

◦ Condition 1: absolutely integrable

න
−∞

∞

𝑥 𝑡 𝑑𝑡 < ∞ (4.13)

◦ Condition 2: finite number of maxima and

minima within any finite interval

◦ Condition 3: finite number of discontinuities

within any finite interval.

4.1.3 Examples of C-T FT

 Examples 4.1~4.5
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𝑥(𝑡) = 𝑒−𝑎𝑡𝑢(𝑡), 𝑎 > 0

𝑋(𝑗𝜔) = න
0

∞

𝑒−𝑎𝑡𝑒−𝑗𝜔𝑡𝑑𝑡 = −
1

𝑎 + 𝑗𝜔
𝑒−(𝑎+𝑗𝜔)𝑡 ฬ

∞
0

=
1

𝑎 + 𝑗𝜔
, 𝑎 > 0

|𝑋(𝑗𝜔)| =
1

𝑎2 + 𝜔2
, ∠𝑋(𝑗𝜔) = − tan−1(

𝜔

𝑎
)

Example 4.1

𝑧 = 𝑥 + 𝑗𝑦, |𝑧| = 𝑥2 + 𝑦2

𝑧 = 𝑥 − 𝑗𝑦, |𝑧| = 𝑥2 + (−𝑦)2

= 𝑥2 + 𝑦2

∠𝑧 = tan−1
𝑦

𝑥

Let 𝑥 𝑡 = 𝑒−𝑎 𝑡 , 𝑎 > 0

→𝑋 𝑗𝜔 = ∞−׬
∞

𝑒−𝑎 𝑡 𝑒−𝑗𝜔𝑡𝑑𝑡

= න
−∞

0

𝑒𝑎𝑡𝑒−𝑗𝜔𝑡𝑑𝑡 + න
0

∞

𝑒−𝑎𝑡𝑒−𝑗𝜔𝑡𝑑𝑡

=
1

𝑎 − 𝑗𝜔
+

1

𝑎 + 𝑗𝜔

=
2𝑎

𝑎2 + 𝜔2
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Let 𝑥 𝑡 = 𝛿 𝑡
substituting into Eq. 4.9

→𝑋 𝑗𝜔 = ׬
−∞

∞
𝛿 𝑡 𝑒−𝑗𝜔𝑡𝑑𝑡 = 1

𝑥 𝑡 = ቊ
1, 𝑡 < 𝑇1
0, 𝑡 > 𝑇1

Applying Eq. (4.9)→𝑋 𝑗𝜔 = ׬
−𝑇1

𝑇1 𝑒−𝑗𝜔𝑡𝑑𝑡 = 2
sin 𝜔𝑇1

𝜔
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Ex 4.4

𝑋 𝑗𝜔 = න
−𝑇1

𝑇1

𝑒−𝑗𝜔𝑡𝑑𝑡

= −
1

𝑗𝜔
𝑒−𝑗𝜔𝑡|

𝑇1
−𝑇1

= −
1

𝑗𝜔
(𝑒−𝑗𝜔𝑇1 − 𝑒𝑗𝜔𝑇1)

=
2

𝜔
(
𝑒𝑗𝜔𝑇1−𝑒−𝑗𝜔𝑇1

2𝑗
)

= 
2

𝜔
sin𝜔𝑇1

Example 4.5

𝑋 𝑗𝜔 = ቊ
1, 𝜔 < 𝑊
0, 𝜔 < 𝑊

Using the synthesis equation (4.8), we can determine

→𝑥 𝑡 =
1

2𝜋
𝑊−׬
𝑊

𝑒𝑗𝜔𝑡𝑑𝜔 =
sin 𝑊𝑡

𝜋𝑡

A commonly used precise form for the sinc function is

→sinc 𝜃 =
sin 𝜋𝜃

𝜋𝜃

2 sin𝜔𝑇1
𝜔

= 2𝑇1sinc
𝜔𝑇1
𝜋

sin𝑊𝑡

𝜋𝑡
=
𝑊

𝜋
sinc

𝑊𝑡

𝜋
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Observation 

 The Fourier transform pair consists of a 

function of the form sinaq/bq, and a 

rectangular pulse ➔ duality property for 

Fourier transform

Sinc function: sinc(𝜃) =
sin( 𝜋𝜃)

𝜋𝜃
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4.2 The Fourier Transform for 

Periodic Signals

 The FT of a periodic signal can be constructed 

directly from its FS.

 We consider a signal 𝑥(𝑡) with F.T. 𝑋 𝑗𝜔 .
𝑋 𝑗𝜔 = 2𝜋𝛿 𝜔 − 𝜔0 4.21

⇒ 𝑥 𝑡 =
1

2𝜋
න
−∞

∞

2𝜋𝛿 𝜔 − 𝜔0 𝑒𝑗𝜔𝑡𝑑𝜔 = 𝑒𝑗𝜔0𝑡

More generally, if

𝑋 𝑗𝜔 = σ𝑘=−∞
∞ 2𝜋𝑎𝑘𝛿(𝜔 − 𝑘𝜔0) (4.22)

⇒ 𝑥 𝑡 = ෍

𝑘=−∞

+∞

𝑎𝑘𝑒
𝑗𝑘𝜔0𝑡

F.S. representation of a 

periodic signal



2022/6/15

14

Example 4.6

 In Figure 4.1 , The Fourier series 
coefficients for this signal are

→𝑎𝑘 =
sin 𝑘𝜔0𝑇1

𝜋𝑘

 And the Fourier transform of the signal is

→𝑋 𝑗𝜔 = σ𝑘=−∞
+∞ 2 sin 𝑘𝜔0𝑇1

𝑘
𝛿 𝜔 − 𝑘𝜔0
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Example 4.7

Let 𝑥 𝑡 = sin𝜔0𝑡
Fourier series coefficients for this signal

→𝑎1 =
1

2𝑗
, 𝑎−1 = −

1

2𝑗
,

𝑎𝑘 = 0, for 𝑘 ≠ 1 or − 1
𝑋 𝑗𝜔 = 2𝜋𝑎1𝛿(𝜔 − 𝜔0)+2𝜋𝑎−1𝛿(𝜔 + 𝜔0)

=𝜋/j 𝛿 𝜔 − 𝜔0 − 𝜋/j 𝛿(𝜔 + 𝜔0)

Similarly, for 𝑥 𝑡 = cos𝜔0𝑡

→𝑎1 = 𝑎−1 =
1

2
𝑎𝑘 = 0, for 𝑘 ≠ 1 or − 1

𝑋 𝑗𝜔 = 𝜋[𝛿 𝜔 − 𝜔0 +𝛿(𝜔 + 𝜔0)]

The Fourier transform of a 

periodic impulse train in the 

time domain with period T

is a periodic impulse train 

in the frequency domain 

with period 2p/T.
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Example 4.8

Let 𝑥 𝑡 = ෍

𝑘=−∞

+∞

𝛿 𝑡 − 𝑘𝑇 ,

which is periodic with period T, as indicated in 
Figure 4.14. The Fourier series coefficients for this 
signal were computed in Example 3.8. and are 
given by

𝑎𝑘 =
1

𝑇
𝑇/2−׬
+𝑇/2

𝛿 𝑡 𝑒𝑗𝑘𝑤0𝑡𝑑𝑡 =
1

𝑇
.

Every Fourier coefficient of the periodic impulse 
train has the same value, 1/T.
Substituting this value for 𝑎𝑘 in Eq. (4.22) yields

𝑋 𝑗𝜔 =
2𝜋

𝑇
σ𝑘=−∞
∞ 𝛿 𝜔 −

2𝜋𝑘

𝑇
.

4.3 Properties of the Continuous-Time 

Fourier Transform

 Linearity:

if 

𝑥 𝑡 ՞
𝐹
𝑋 𝑗𝜔

and 

y 𝑡 ՞
𝐹
𝑌 𝑗𝜔

then

𝑎𝑥 𝑡 + 𝑏𝑦 𝑡 ՞
𝐹
𝑎𝑋 𝑗𝜔 + 𝑏𝑌 𝑗𝜔

(4.26)
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 Time shifting:

if

𝑥 𝑡
𝐹.𝑇.

𝑋 𝑗𝜔

then

𝑥 𝑡 − 𝑡0
𝐹.𝑇.

𝑒−𝑗𝜔𝑡0𝑋 𝑗𝜔 (4.27)

 Conjugation and Conjugate Symmetry:

if

𝑥 𝑡
𝐹.𝑇.

𝑋 𝑗𝜔

then

𝑥
∗
𝑡

𝐹.𝑇.
𝑋

∗
−𝑗𝜔 (4.28)

if 𝑥 𝑡 is real, then 𝑋 𝑗𝜔 is symmetric; that is:

𝑋 −𝑗𝜔 = 𝑋
∗
𝑗𝜔 4.30

[Example 4.9]  
1 2

1
( ) ( 2.5) ( 2.5)

2
x t x t x t= − + −

1

2sin( / 2)
( )X j

w
w

w
=

From [Example 4.4]

2

2sin(3 / 2)
( )X j

w
w

w
=

5 /2 sin( / 2) 2sin(3 / 2)
( ) jX j e w w w

w
w

− + 
=  

 

P.330
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 If 𝑥 𝑡 is real and we express 𝑋 𝑗𝜔 in rectangular 

form as:

𝑋 𝑗𝜔 = Re 𝑋 𝑗𝜔 + 𝑗Im 𝑋 𝑗𝜔

=> Re 𝑋 𝑗𝜔 = Re 𝑋 −𝑗𝜔

Im 𝑋 𝑗𝜔 = −Im 𝑋 −𝑗𝜔

 If 𝑥 𝑡 is both real and even, then 𝑋 𝑗𝜔 is also 

real and even.

 If 𝑥 𝑡 is real and odd, then 𝑋 𝑗𝜔 is purely 

imaginary and odd.

𝑥(𝑡)
𝑓.𝑡.

𝑋(𝑗𝑤)

𝐸𝑣{𝑥(𝑡)}
𝑓.𝑡.

Re{𝑋(𝑗𝑤)}

𝑒−𝑎𝑡𝑢(𝑡)
ℑ 1

𝑎 + 𝑗𝑤
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Example 4.10

From Example 4.1, we have

→𝑒−𝑎𝑡𝑢 𝑡
ℱ 1

𝑎+𝑗𝜔

Note that for t>0, x(t) equals e-atu(t), while for t<0, x(t) 
takes on mirror image values. That is

→𝑥 𝑡 = 𝑒−𝑎 𝑡 = 𝑒−𝑎𝑡𝑢 𝑡 + 𝑒𝑎𝑡𝑢 −𝑡

= 2
𝑒−𝑎𝑡𝑢 𝑡 + 𝑒𝑎𝑡𝑢 −𝑡

2
= 2ℰ𝑣 𝑒−𝑎𝑡𝑢 𝑡

Since e-atu(t) is real valued, the symmetry properties of 
the Fourier transform lead us to conclude that

→ℰ𝑣 𝑒−𝑎𝑡𝑢 𝑡
ℱ

ℜℯ
1

𝑎+𝑗𝜔

It follow that 𝑋 𝑗𝜔 = 2ℜℯ
1

𝑎+𝑗𝜔
=

2𝑎

𝑎2+𝜔2

 Differentiation and Integration:

if

𝑥 𝑡
𝐹.𝑇.

𝑋 𝑗𝜔

then
𝑑

𝑑𝑡
𝑥(𝑡)

𝐹.𝑇.
𝑗𝜔𝑋 𝑗𝜔 (4.31)

න
−∞

𝑡

𝑥 𝜏 𝑑𝜏
𝐹.𝑇. 1

𝑗𝜔
𝑋 𝑗𝜔 + 𝜋𝑋 0 𝛿 𝜔 (4.32)

 Time and Frequency Scaling:

if

𝑥 𝑡
𝐹.𝑇.

𝑋 𝑗𝜔

then

𝑥 𝑎𝑡
𝐹.𝑇. 1

𝑎
𝑋

𝑗𝜔

𝑎
(4.34)
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Example 4.11
Let us determine the Fourier transform X(jw) of the unit 
step x(t)=u(t), making use of eq.(4.32) and the knowledge

𝑔 𝑡 = 𝛿 𝑡
ℱ

𝐺 𝑗𝜔 = 1

Noting that

𝑥 𝑡 = න
−∞

𝑡

𝑔 𝜏 𝑑𝜏

And taking the Fourier transform of both sides, we obtain

𝑋 𝑗𝜔 =
𝐺 𝑗𝜔

𝑗𝜔
+ 𝜋𝐺 0 𝛿 𝜔

Since G(jw)=1→𝑋 𝑗𝜔 =
1

𝑗𝜔
+ 𝜋𝛿 𝜔 −−−−(4.33)

Apply Eq. (1.31)→𝛿 𝑡 =
𝑑𝑢 𝑡

𝑑𝑡

ℱ
𝑗𝜔

1

𝑗𝜔
+ 𝜋𝛿 𝜔 =1
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Example 4.12

As illustrated in Figure 4.16(b), g(t) is the sum of a rectangular 

pulse and two impulses.

𝐺 𝑗𝜔 = (
2 sin𝜔

𝜔
) − 𝑒𝑗𝜔 − 𝑒−𝑗𝜔

Note that G(0)=0. Using the integration property, we obtain

𝑋 𝑗𝜔 =
𝐺 𝑗𝜔

𝑗𝜔
+ 𝜋𝐺 0 𝛿 𝜔

With G(0)=0, this becomes

𝑋 𝑗𝜔 =
2 sin𝜔

𝑗𝜔2
−

2

𝑗𝜔
(
𝑒𝑗𝜔 + 𝑒−𝑗𝜔

2
) =

2 sin𝜔

𝑗𝜔2
−
2 cos𝜔

𝑗𝜔
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4.3.5 Time and Frequency Scaling

If    ( ) ( ).x t X jw⎯→F

then since 

1
( ) ( )

2

j tx t X j e dww w
p

+

−
= 

{ ( )} ( ) j tx at x at e dtw
+

−

−
= F

after substituting at by 

( / )

( / )

1
( ) , 0

{ ( )}
1

( ) , 0

j a

j a

x e d a
a

x at

x e d a
a

w 

w 

 

 

+
−

−

+
−

−




= 
− 






F

1
( ) ( )

| |

j
x at X

a a

w
⎯→F

P.336-337

1
( ) ( )

| |

j
x at X

a a

w
⎯→F

Specially, when a = 1,

( ) ( )x t X jw− ⎯→ −F
(time reversal property)

P.337
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4.3.6 Duality

( ) ( )x t X jw⎯→FIn summary, if , then
( ) ( )2X jt xp w⎯→ −F

( ) ( )1
2

X jt x w
p

⎯→ −F

(1) Duality for Transform Pairs

P.337-338

Duality
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Example 4.13
Let us consider using duality to find the Fourier 
transform 𝐺 𝑗𝜔 of the signal

𝑔 𝑡 =
2

1 + 𝑡2

In Example 4.2

→𝑋 𝑗𝜔 =
2

1+𝜔2

→𝑥 𝑡 = 𝑒− 𝑡
ℱ

𝑋 𝑗𝜔 =
2

1+𝜔2

The synthesis equation for this Fourier transform pair is

𝑒− 𝑡 =
1

2𝜋
∞−׬
∞ 2

1+𝜔2 𝑒𝑗𝜔𝑡𝑑𝜔

t→-t ➔ 2𝜋𝑒− 𝑡 = ∞−׬
∞ 2

1+𝜔2 𝑒−𝑗𝜔𝑡𝑑𝜔

t→w ➔ 2𝜋𝑒− 𝜔 = ׬
−∞

∞ 2

1+𝑡2
𝑒−𝑗𝜔𝑡𝑑𝑡

➔ℱ
2

1+𝑡2
= 2𝜋𝑒− 𝜔
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 If 𝑋 𝑗𝜔 = ∞−׬
∞

𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡

then

𝑑𝑋 𝑗𝜔

𝑑𝜔
= න

−∞

∞

−𝑗𝑡𝑥(𝑡)𝑒−𝑗𝜔𝑡𝑑𝑡 (4.39)

that is:

−𝑗𝑡𝑥 𝑡
𝐹𝑇 𝑑𝑋 𝑗𝜔

𝑑𝜔
(4.40)

similarly:

𝑒𝑗𝜔0𝑡𝑥 𝑡
𝐹𝑇
𝑋 𝑗(𝜔 − 𝜔0 ) (4.41)

−
1

𝑗𝑡
𝑥 𝑡 + 𝜋𝑥 0 𝛿 𝑡

𝐹𝑇
න
−∞

𝑤

𝑋 η 𝑑η (4.42)

4.3.7  Parseval’s Relation 

 Parseval’s Relation:

If 

𝑥 𝑡
𝐹.𝑇.

𝑋 𝑗𝜔

then

׬
−∞

∞
|𝑥 t |2𝑑t=

1

2𝜋
׬
−∞

∞
|𝑋 𝑗ω |2𝑑ω (4.43)
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2 *

*

( ) ( ) ( )

1
( ) ( ) .

2

j t

x t dt x t x t dt

x t X j e d dtww w
p

+ +

− −

+ +
−

− −

=

 
=  

 

 

 

(Proof)

*1
( ) ( ) .

2

j tX j x t e dt dww w
p

+ +
−

− −

 =
   

21
| ( ) |

2
X j dw w

p

+

−
= 
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Example 4.14

For each of the Fourier transforms shown in Fig. 4.18, we wish 

to evaluate the following time-domain expressions:

𝐸 = න
−∞

∞

𝑥 𝑡 2𝑑𝑡 , 𝐷 =
𝑑

𝑑𝑡
𝑥 𝑡 ቚ

𝑡=0

To evaluate E, we may use Parseval’s relation. That is

𝐸 =
1

2𝜋
න
−∞

∞

𝑋 𝑗𝜔 2𝑑𝜔……………(4.44)

To evaluate D in the frequency domain, we first use the 

differentiation property to observe that

𝑔 𝑡 =
𝑑

𝑑𝑡
𝑥 𝑡

ℱ𝑇
𝑗𝜔𝑋 𝑗𝜔 = 𝐺 𝑗𝜔

Noting that→𝐷 = 𝑔 0 =
1

2𝜋
׬
−∞

∞
𝐺 𝑗𝜔 𝑑𝜔……………(4.45)

We conclude➔𝐷 = ׬
−∞

∞
𝑗𝜔𝑋 𝑗𝜔 𝑑𝜔………………(4.46)

Fig. 4.18(a)
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Figure 4.18(a)

Fig. 4.18(b)
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4.4 The Convolution Property

 For an LTI system:

=> 𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ 𝑡

= ∞−׬
∞

𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏

𝑌 𝑗𝜔 = 𝐹 𝑦 𝑡

= ∞−׬
∞

∞−׬
∞
𝑥 𝜏 ℎ 𝑡 − 𝜏 𝑑𝜏 𝑒−𝑗𝜔𝑡𝑑𝑡 (4.53)

= ∞−׬
∞

𝑥 𝜏 ∞−׬
∞
ℎ 𝑡 − 𝜏 𝑒−𝑗𝜔𝑡𝑑𝑡 𝑑𝜏 (4.54)

= 𝐻(𝑗𝜔) ∞−׬
∞

𝑥 𝜏 𝑒−𝑗𝜔𝜏𝑑𝜏 (4.55)

= 𝐻 𝑗𝜔 𝑋(𝑗𝜔)

 Summary:

𝑦 𝑡 = 𝑥 𝑡 ∗ ℎ 𝑡
𝐹.𝑇.

𝑌 𝑗𝜔 = 𝐻 𝑗𝜔 𝑋(𝑗𝜔)

(4.56)

𝑒−𝑗𝜔𝜏𝐻(𝑗𝜔)
X(j𝜔)
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Cascade of two LTI systems:

𝑌(𝑗𝜔) = 𝑌1(𝑗𝜔)𝐻2(𝑗𝜔) = 𝐻1(𝑗𝜔)𝐻2(𝑗𝜔)𝑋(𝑗𝜔)

Examples 4.15~4.20
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Example 4.15
 Consider a continuous-time LTI system with 

impulse response

→ℎ 𝑡 = 𝛿 𝑡 − 𝑡0 ………………(4.58)
 The Fourier transform of h(t)

→𝐻 𝑗𝜔 = 𝑒−𝑗𝜔𝑡0 ………………(4.59)
 For any input x(t) with Fourier transform 𝑋 𝑗𝜔 , 

the Fourier transform of the output is

➔𝑌 𝑗𝜔 = 𝐻 𝑗𝜔 𝑋 𝑗𝜔 = 𝑒−𝑗𝜔𝑡0𝑋 𝑗𝜔 …(4.60)

 This result, in fact, is consistent with the time-
shift property of Section 4.3.2. Specifically, a 
system for which the impulse response is 
𝛿 𝑡 − 𝑡0 applies a time shift to the input —

 that is  ➔𝑦 𝑡 = 𝑥 𝑡 − 𝑡0

Example 4.16

As a second example, let us examine a 

differentiator—that is, an LTI system for which 

the input x(t) and the output y(t) are related by

→𝑦 𝑡 =
𝑑𝑥 𝑡

𝑑𝑡

From the differentiation property of Section 

4.3.4

→𝑌 𝑗𝜔 = 𝑗𝜔𝑋 𝑗𝜔 ……………(4.61)

Consequently, from Eq. (4.56), it follows that 

the frequency response of a differentiator is

→𝐻 𝑗𝜔 = 𝑗𝜔
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Example 4.17

Consider an integrator—that is, an LTI system specified by the 
equation

→𝑦 𝑡 = ∞−׬
𝑡

𝑥 𝜏 𝑑𝜏

The impulse response for this system is the unit step u(t), and 
therefore, from Example 4.11 and Eq. (4.33), the frequency 
response of the system is

→𝐻 𝑗𝜔 =
1

𝑗𝜔
+ 𝜋𝛿 𝜔

Then using eq. (4.56), we have

→𝑌 𝑗𝜔 = 𝐻 𝑗𝜔 𝑋 𝑗𝜔

=
1

𝑗𝜔
𝑋 𝑗𝜔 + 𝜋𝑋 𝑗𝜔 𝛿 𝜔

=
1

𝑗𝜔
𝑋 𝑗𝜔 + 𝜋𝑋 0 𝛿(𝜔)

which is consistent with the integration property of Eq. (4.32).

Example 4.18
 As we discussed in Section 3.9.2, frequency-selective 

filtering is accomplished with an LTI system whose 
frequency response H(j𝜔) passes the desired range of 
frequencies and significantly attenuates frequencies 
outside that range. 

 For example, consider the ideal lowpass filter 
introduced in Section 3.9.2, which has the frequency 
response illustrated in Figure 4.20 and given by

→𝐻 𝑗𝜔 = ቊ
1, 𝜔 < 𝜔𝑐

0, 𝜔 > 𝜔𝑐
……………….(4.63)

 Now that we have developed the Fourier transform 
representation, we know that the impulse response h(t) 
of this ideal filter is the inverse transform of eq. (4.63). 
Using the result in Example 4.5, we then have

→ℎ 𝑡 =
sin 𝜔𝑐𝑡

𝜋𝑡
……………(4.64)

which is plotted in Figure 4.21.
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 From Example 4.18, we can begin to see some of the 
issues, that arise in filter design that involve looking in 
both the time and frequency domains. 

 In particular, while the ideal lowpass filter does have 
perfect frequency selectivity, its impulse response has 
some characteristics that may not be desirable. 

 First, note that h(t) is not zero for t < 0. Consequently, the 
ideal lowpass filter is not causal, and thus, in applications 
requiring causal systems, the ideal filter is not an option. 

 Moreover, as we discuss in Chapter 6, even if causality is 
not an essential constraint, the ideal filter is not easy to 
approximate closely, and non-ideal filters that are more 
easily implemented are typically preferred. 

 Furthermore, in some applications (such as the 
automobile suspension system discussed in Section 6.7.1), 
oscillatory behavior in the impulse response of a lowpass 
filter may be undesirable.
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 In such applications the time domain characteristics 
of the ideal lowpass filter, as shown in Figure 4.21, 
may be unacceptable, implying that we may need to 
trade off frequency-domain characteristics such as 
ideal frequency selectivity with time-domain 
properties. 

 For example, consider the LTI system with impulse 
response

→ℎ 𝑡 = 𝑒−𝑡𝑢 𝑡 ……………(4.65)

 The frequency response of this system is

➔𝐻 𝑗𝜔 =
1

𝑗𝜔+1
………(4.66)

Fig. 4.22
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Example 4.19

Consider the response of an LTI system with impulse 

response

→ℎ 𝑡 = 𝑒−𝑎𝑡𝑢 𝑡 , 𝑎 > 0

To the input signal

→𝑥 𝑡 = 𝑒−𝑏𝑡𝑢 𝑡 , 𝑏 > 0

Rather than computing y(t) = x(t) * h(t) directly, let us 

transform the problem into the frequency domain. From 

Example 4.1, the Fourier transforms of x(t) and h(t) 

are→𝑋 𝑗𝜔 =
1

𝑏+𝑗𝜔
,  𝐻 𝑗𝜔 =

1

𝑎+𝑗𝜔

Therefore, → 𝑌 𝑗𝜔 =
1

(𝑎+𝑗𝜔)(𝑏+𝑗𝜔)
……………(4.67)

 To determine the output y(t), we wish to obtain the 

inverse transform of 𝑌 𝑗𝜔 . This is most simply done 

by expanding 𝑌 𝑗𝜔 in a partial-fraction expansion.

◆ Such expansions are extremely useful in evaluating inverse 

transforms

◆ The general method for performing a partial-fraction 

expansion is developed in the appendix. 

 For this example, assuming that 𝒃 ≠ 𝒂, the partial 

fraction expansion for 𝑌 𝑗𝜔 takes the form

→𝑌 𝑗𝜔 =
𝐴

𝑎+𝑗𝜔
+

𝐵

𝑏+𝑗𝜔
………………………(4.68)
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Where A and B are constants to be determined. One way to find 

A and B is to equate the right-hand sides of Eqs. (4.67) and (4.68), 

multiply both sides by (𝑎 + 𝑗𝜔)(𝑏 + 𝑗𝜔), and solve for A and B.

1=A(b+jw)+B(a+jw), 

Ab+Ba=1, jw(A+B)=0 ➔ B=−A, A(b-a)=1, 

We find that→𝐴 =
1

𝑏−𝑎
= −𝐵

∴ 𝑌 𝑗𝜔 =
1

𝑏 − 𝑎

1

𝑎 + 𝑗𝜔
−

1

𝑏 + 𝑗𝜔
………………………(4.69)

The inverse transform for each of the two terms in Eq. (4.69) can 

be recognized by inspection. Using the linearity property of 

Section 4.3.1, we have

→ 𝑦 𝑡 =
1

𝑏−𝑎
𝑒−𝑎𝑡𝑢 𝑡 − 𝑒−𝑏𝑡𝑢 𝑡

When b = a, the partial fraction expansion of Eq. (4.69) is not 

valid. However, with b = a, Eq. (4.67) becomes

→ 𝑌 𝑗𝜔 =
1

𝑎+𝑗𝜔 2 = 𝑗
𝑑

𝑑𝜔

1

𝑎+𝑗𝜔

We can use the dual of the differentiation property, as given in 

Eq. (4.40). Thus,

→

𝑒−𝑎𝑡𝑢 𝑡
ℱ 1

𝑎+𝑗𝜔

𝑡𝑒−𝑎𝑡𝑢 𝑡
ℱ

𝑗
𝑑

𝑑𝜔

1

𝑎+𝑗𝜔
=

1

𝑎+𝑗𝜔 2

➔𝑦 𝑡 = 𝑡𝑒−𝑎𝑡𝑢 𝑡
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Example 4.20

As another illustration of the usefulness of the 
convolution property, let us consider the 
problem of determining the response of an ideal 
lowpass filter to an input signal x(t) that has the 
form of a sine function. That is

→𝑥 𝑡 =
sin 𝜔𝑖𝑡

𝜋𝑡

Of course, the impulse response of the ideal 
lowpass filter is of a similar form, namely,

→ℎ 𝑡 =
sin 𝜔𝑐𝑡

𝜋𝑡

The filter output y(t) will therefore be the 
convolution of two sinc functions, which, as we 
now show, also turns out to be a sinc function. 

A particularly convenient way of deriving this result is to first 
observe that

→𝑌 𝑗𝜔 = 𝑋 𝑗𝜔 𝐻 𝑗𝜔

𝑋 𝑗𝜔 = ቊ
1, 𝜔 ≤ 𝜔𝑖

0, elsewhere
, 𝐻 𝑗𝜔 = ቊ

1, 𝜔 ≤ 𝜔𝑐

0, elsewhere

➔𝑌 𝑗𝜔 = ቊ
1, 𝜔 ≤ 𝜔0

0, elsewhere
where 𝜔0 is the smaller of the two numbers 𝜔𝑐 and 𝜔𝑖. 
Finally, the inverse Fourier transform of 𝑌(𝑗𝜔) is given by 

➔𝑦(𝑡) = ൞

sin 𝜔𝑐𝑡

𝜋𝑡
, if 𝜔𝑐 ≤ 𝜔𝑖

sin 𝜔𝑖𝑡

𝜋𝑡
, if 𝜔𝑖 ≤ 𝜔𝑐

That is, depending upon which of 𝜔𝑐 and 𝜔𝑖 is smaller, the 
output is equal to either 𝑥(𝑡) or ℎ(𝑡).
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4.5 The Multiplication Property

𝑟 𝑡 = 𝑠 𝑡 𝑝 𝑡
𝐹.𝑇.

𝑅 𝑗𝜔 =
1

2𝜋
[𝑆 𝑗𝜔 ∗ 𝑃 𝑗𝜔 ]

(4.70)

1
( ) ( ) ( ) ( ) ( ) ( ( ))

2
r t s t p t R j S j P j dw q w q q

p

+

−
=  = −

Example 4.21

Determine the F. T. of 𝑟 𝑡 = 𝑠 𝑡 𝑝 𝑡 , where 

s 𝑡
𝐹.𝑇.

𝑆 𝑗𝜔 and 𝑝 𝑡 = 𝑐𝑜𝑠𝜔0𝑡.

𝑝 𝑡 = 𝑐𝑜𝑠𝜔0𝑡 =
1

2
(𝑒𝑗𝜔0𝑡 + 𝑒−𝑗𝜔0𝑡)

𝑃 𝑗𝜔 = 𝜋𝛿 𝜔 − 𝜔0 + 𝜋𝛿(𝜔 + 𝜔0)

𝑅 𝑗𝜔 =
1

2𝜋
𝑆 𝑗𝜔 ∗ 𝑃 𝑗𝜔

=
1

2
𝑆 𝑗 𝜔 − 𝜔0 +

1

2
𝑆 𝑗 𝜔 + 𝜔0

∗ =
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Example 4.22
 Let us now consider r(t) as obtained in Example 4.21, and let

→𝑔 𝑡 = 𝑟 𝑡 𝑝 𝑡

where, again, 𝑝 𝑡 = cos𝜔0𝑡. Then, 𝑅(𝑗𝜔), 𝑃(𝑗𝜔), and         

𝐺(𝑗𝜔) are as shown in Figure 4.24.

 From Figure 4.24(c) and the linearity of the Fourier transform, 

we see that g(t) is the sum of (1/2)s(t) and a signal with a 

spectrum that is nonzero only at higher frequencies (centered 

around :±2𝜔0). 

 Suppose then that we apply the signal 𝑔(𝑡) as the input to a 

frequency-selective lowpass filter with frequency response 

𝐻 𝑗𝜔 that is constant at low frequencies (say, for 𝜔 < 𝜔1) 

and zero at high frequencies (for 𝜔 > 𝜔1). 

 Then the output of this system will have as its spectrum 

𝐻 𝑗𝜔 𝐺 𝑗𝜔 , which, because of the particular choice of 

𝐻 𝑗𝜔 , will be a scaled replica of 𝑆 𝑗𝜔 . Therefore, the 

output itself will be a scaled version of 𝑠 𝑡 . 

𝐻 𝑗𝜔
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Example 4.23

 What is the F. T. of 𝑥 𝑡 =
sin 𝑡 sin(

𝑡

2
)

𝜋𝑡2
?

𝑥 𝑡 = 𝜋(
sin 𝑡

𝜋𝑡
)(
sin

𝑡

2

𝜋𝑡
)

𝑋 𝑗𝜔 =
1

2𝜋
∙ 𝜋 ∙ 𝐹

sin 𝑡

𝜋𝑡
∗ 𝐹{

sin
𝑡
2

𝜋𝑡
}
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4.5.1 Frequency-Selective Filtering 

with Variable Center Frequency

 Figure 4.26
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4.6 Tables of Fourier Properties and of Basic 

Fourier Transform Pairs
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(followed by the next page)
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4.7 Systems Characterized by Linear Constant-

Coefficient Differential Equations

 Linear constant-coefficient differential equation

෍

𝑘=0

𝑁

𝑎𝑘
𝑑𝑘𝑦(𝑡)

𝑑𝑡𝑘
= ෍

𝑘=0

𝑀

𝑏𝑘
𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘
(4.72)

If 𝑌 𝑗𝜔 = 𝐻 𝑗𝜔 𝑋 𝑗𝜔

⇒ 𝐻 𝑗𝜔 =
𝑌(𝑗𝜔)

𝑋(𝑗𝜔)
(4.73)
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and then:

𝐹 ෍

𝑘=0

𝑁

𝑎𝑘
𝑑𝑘𝑦(𝑡)

𝑑𝑡𝑘
= 𝐹 ෍

𝑘=0

𝑀

𝑏𝑘
𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘
(4.74)

⇒ ෍

𝑘=0

𝑁

𝑎𝑘𝐹
𝑑𝑘𝑦(𝑡)

𝑑𝑡𝑘
=෍

𝑘=0

𝑀

𝑏𝑘𝐹
𝑑𝑘𝑥(𝑡)

𝑑𝑡𝑘
(4.75)

⇒ ෍

𝑘=0

𝑁

𝑎𝑘 𝑗𝜔 𝑘𝑌(𝑗𝜔) =෍

𝑘=0

𝑀

𝑏𝑘 𝑗𝜔 𝑘𝑋(𝑗𝜔)

⇒ 𝑌 𝑗𝜔 ෍

𝑘=0

𝑁

𝑎𝑘 𝑗𝜔 𝑘 = 𝑋(𝑗𝜔) ෍

𝑘=0

𝑀

𝑏𝑘 𝑗𝜔 𝑘

⇒ 𝐻 𝑗𝜔 =
𝑌 𝑗𝜔

𝑋 𝑗𝜔
=
σ𝑘=0
𝑀 𝑏𝑘 𝑗𝜔 𝑘

σ𝑘=0
𝑁 𝑎𝑘 𝑗𝜔 𝑘

(4.76)
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Example 4.24

Consider a stable LTI system characterized by the 

differential equation
𝑑𝑦(𝑡)

𝑑𝑡
+ 𝑎𝑦 𝑡 = 𝑥(𝑡).               (4.77)

with a>0. From Eq. (4.76), the frequency response is

𝐻 𝑗𝜔 =
1

𝑗𝜔+𝑎
.                         (4.78)

Comparing this with the result of Example 4.1, we 

see that Eq. (4.78) is the Fourier transform of e-atu(t). 

The impulse response of the system is then 

recognized as

ℎ 𝑡 = 𝑒−𝑎𝑡𝑢(𝑡).

Example 4.25
2

2

( ) ( ) ( )
4 3 ( ) 2 ( )

d y t dy t dx t
y t x t

dt dt dt
+ + = +

2

( ) 2
( )

( ) 4( ) 3

j
H j

j j

w
w

w w

+
=

+ +

1 1
2 22

( )
( 1)( 3) 1 3

j
H j

j j j j

w
w

w w w w

+
= = +

+ + + +

31 1
( ) ( ) ( )

2 2

t th t e u t e u t− −= +
Impulse 

response
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Example 4.26

 If 𝑥 𝑡 = 𝑒−𝑡𝑢 𝑡 ,  

𝑌 𝑗𝜔 = 𝐻 𝑗𝜔 𝑋 𝑗𝜔

= 
𝑗𝜔+2

(𝑗𝜔+1)(𝑗𝜔+3)

1

𝑗𝜔+1
= 

𝑗𝜔+2

(𝑗𝜔+1)2(𝑗𝜔+3)

 The partial fractional expansion takes the form

𝑦 𝑗𝜔 =
A11

𝑗𝜔+1
+

A12

𝑗𝜔+1 2+
A21

𝑗𝜔+3
,

where A11, A12, and A21 are constants to be 
determined.

A11=1/4, A12=1/2, and A21=1/4

With the inverse Fourier transform, 

𝑦 𝑡 = [
1

4
𝑒−𝑡 +

1

2
𝑡𝑒−𝑡 +

1

4
𝑒−3𝑡]𝑢 𝑡 .

Homework

 Basic problems:

 4.1, 4.3, 4.4, 4.10, 4.12, 4.13, 4.14, 4.15

 4.33, 4.37(a), (b), 4.38


