

Chapter 5

The Discrete-Time Fourier Transform

1

Contents:

- 5.1 Representation of **aperiodic discrete-time** signals:
the discrete-time Fourier transform
- 5.2 The Fourier transform for **periodic** signals
- 5.3 Properties of the discrete-time Fourier transform
- 5.4 The **convolution** property
- 5.5 The **multiplication** property
- 5.6 Tables of Fourier transform properties and basic
Fourier transform pairs
- 5.7 **Duality**
- 5.8 **System** characterized by linear constant-
coefficient difference equations

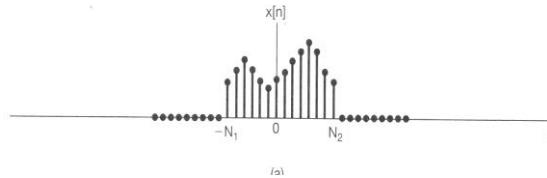
2

5.1 Representation of Aperiodic Signals: The Discrete-Time Fourier Transform

- Recall that in the aperiodic square wave example in 4.1

$$Ta_k = \frac{2 \sin \omega T_1}{\omega} \Big|_{\omega=k\omega_0}$$

- With $T \rightarrow \infty$, Ta_k approaches the envelope
- Consider an aperiodic sequence $x[n]$ which is of finite duration



Finite-duration signal $x[n]$, $x[n]=0$ outside $-N_1 \leq n \leq N_2$

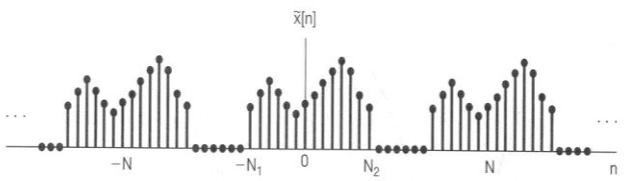
3

- Construct a periodic sequence $\tilde{x}[n]$

- Observe that $\lim_{N \rightarrow \infty} \tilde{x}[n] = x[n]$

- Since $\tilde{x}[n]$ is periodic,

$$\tilde{x}[n] = \sum_{k=-N}^{N} a_k e^{jk(\frac{2\pi}{N})n} \quad (5.1)$$



$$a_k = \frac{1}{N} \sum_{n=-N}^{N} \tilde{x}[n] e^{-jk(\frac{2\pi}{N})n} \quad (5.2)$$

4

$$a_k = \frac{1}{N} \sum_{n=-N_1}^{N_2} \tilde{x}[n] e^{-jk(\frac{2\pi}{N})n} = \frac{1}{N} \sum_{n=-\infty}^{\infty} x[n] e^{-jk(\frac{2\pi}{N})n}$$

- Define the function

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n}$$

$$a_k = \frac{1}{N} X(e^{jk\omega_0}), \quad \text{where } \omega_0 = \frac{2\pi}{N} \quad (5.5)$$

- Combining (5.1) and (5.5) yields $\omega_0 = \frac{2\pi}{N} \rightarrow \frac{1}{N} = \frac{\omega_0}{2\pi}$

$$\tilde{x}[n] = \sum_{k=<N>} \frac{1}{N} X(e^{jk\omega_0}) e^{jk\omega_0 n} \quad (5.6)$$

$$= \frac{1}{2\pi} \sum_{k=<N>} X(e^{jk\omega_0}) e^{jk\omega_0 n} \omega_0 \quad (5.7)$$

- As $N \rightarrow \infty$, $\tilde{x}[n] = x[n]$, $\omega_0 = \frac{2\pi}{N} \rightarrow 0$

$$\lim_{N \rightarrow \infty} \tilde{x}[n] = \lim_{N \rightarrow \infty} \frac{1}{2\pi} \sum_{k=<N>} X(e^{jk\omega_0}) e^{jk\omega_0 n} \omega_0$$

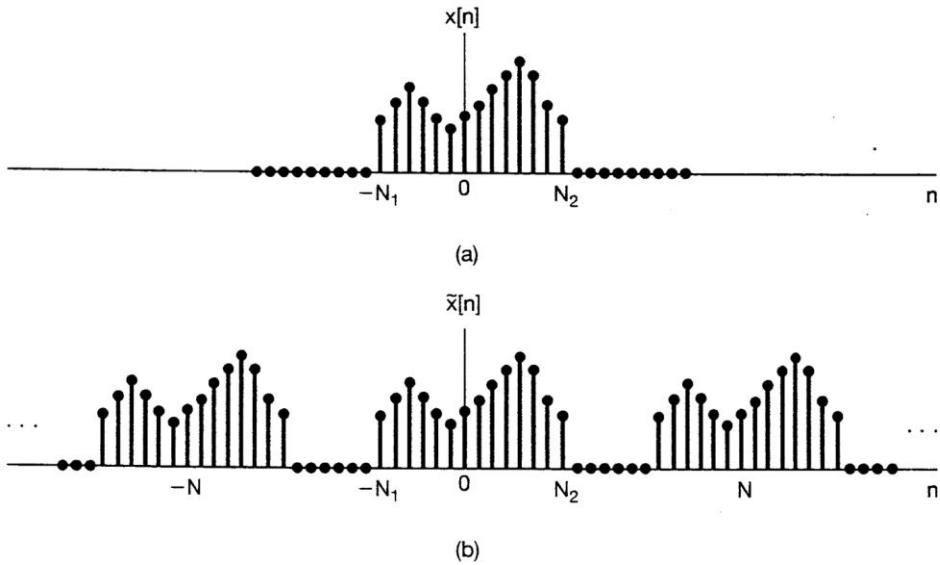


Figure 5.1 (a) Finite-duration signal $x[n]$; (b) periodic signal $\tilde{x}[n]$ constructed to be equal to $x[n]$ over one period.

As N increases ω_0 decreases, and as $N \rightarrow \infty$, Eq. (5.7) passes to an integral and $\tilde{x}[n] = x[n]$

- $K = \langle N \rangle, \omega_0 = \frac{2\pi}{N}$

$$\lim_{N \rightarrow \infty} \tilde{x}[n] = \lim_{N \rightarrow \infty} \frac{1}{2\pi} \sum_{k=\langle N \rangle} X(e^{jk\omega_0}) e^{jk\omega_0 n} \omega_0$$

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega$$

- $X(e^{j\omega})$, $e^{j\omega n}$, and thus $X(e^{j\omega})e^{j\omega n}$ are periodic with period 2π (Fig 5.2). The interval of integral can be any one with length 2π .

- Discrete-Time Fourier Transform pair

$$x[n] = \frac{1}{2\pi} \int_{-\pi}^{\pi} X(e^{j\omega}) e^{j\omega n} d\omega \quad (5.8)$$

$$X(e^{j\omega}) = \sum_{n=-\infty}^{\infty} x[n] e^{-j\omega n} \quad (5.9)$$

10

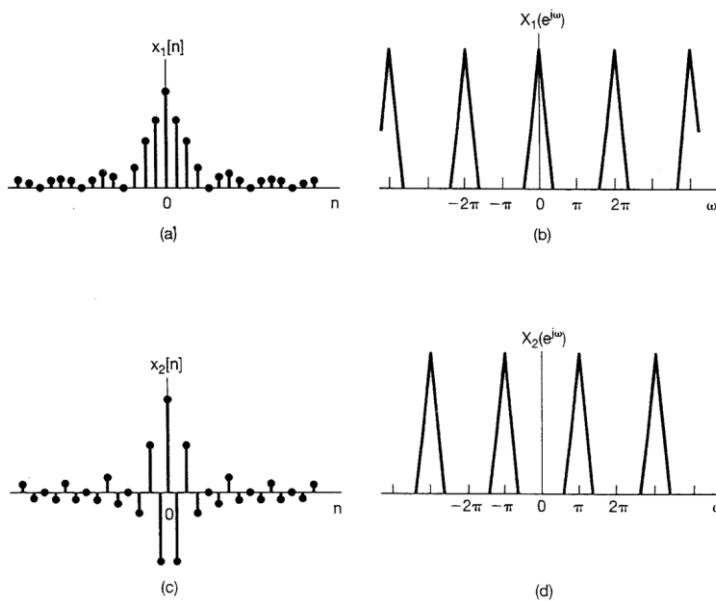


Figure 5.3 (a) Discrete-time signal $x_1[n]$. (b) Fourier transform of $x_1[n]$. Note that $X_1(e^{j\omega})$ is concentrated near $\omega = 0, \pm 2\pi, \pm 4\pi, \dots$ (c) Discrete-time signal $x_2[n]$. (d) Fourier transform of $x_2[n]$. Note that $X_2(e^{j\omega})$ is concentrated near $\omega = \pm\pi, \pm 3\pi, \dots$

11

Example 5.1 (1/3)

Consider the signal

$$x[n] = a^n u[n], \quad |a| < 1.$$

In this case,

$$\begin{aligned} X(e^{j\omega}) &= \sum_{n=-\infty}^{+\infty} a^n u[n] e^{-j\omega n} \\ &= \sum_{n=0}^{\infty} (ae^{-j\omega})^n = \frac{1}{1 - ae^{-j\omega}}. \end{aligned}$$

The magnitude and phase of $X(e^{j\omega})$ are shown in Figure 5.4(a) for $a > 0$ and in figure 5.4(b) for $a < 0$. Note that all of these functions are periodic in ω with period 2π .

12

Example 5.1 (2/3)

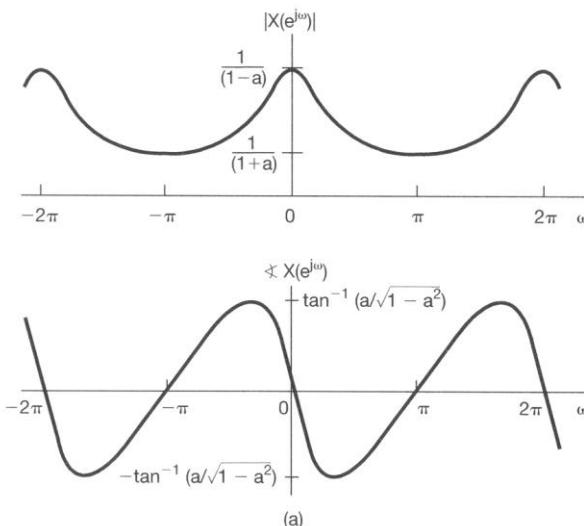


Figure 5.4 Magnitude and phase of the Fourier transform of Example 5.1 for (a) $a > 0$ and (b) $a < 0$.

13

Example 5.1 (3/3)

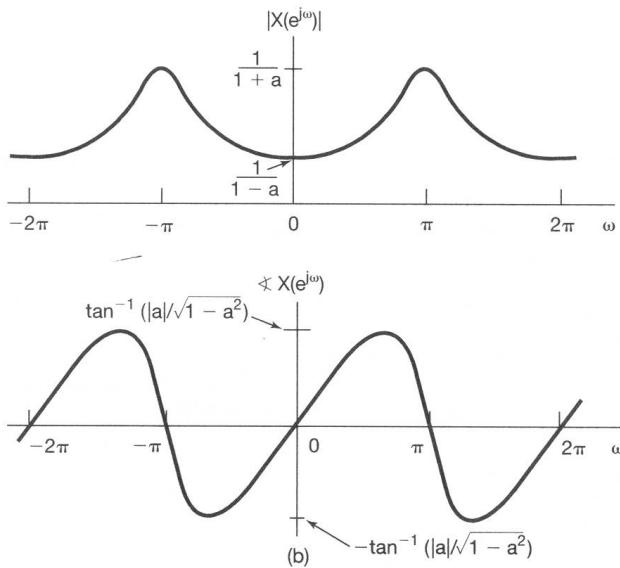


Figure 5.4 Magnitude and phase of the Fourier transform of Example 5.1 for (a) $a > 0$ and (b) $a < 0$.

14

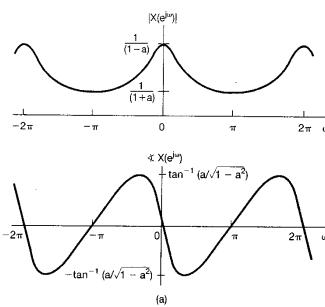
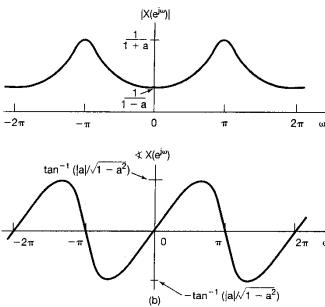


Figure 5.4 Magnitude and phase of the Fourier transform of Example 5.1 for (a) $a > 0$ and (b) $a < 0$.

Example 5.2 (1/3)

Let

$$x[n] = a^{|n|}, \quad |a| < 1.$$

This signal is sketched for $0 < a < 1$ in Figure 5.5(a). Its Fourier transform is obtained from eq. (5.9):

$$\begin{aligned}
 X(e^{j\omega}) &= \sum_{n=-\infty}^{+\infty} a^{|n|} e^{-j\omega n} \\
 &= \sum_{n=0}^{\infty} a^n e^{-j\omega n} + \sum_{n=-\infty}^{-1} a^{-n} e^{-j\omega n} \\
 &\Rightarrow \sum_{m=1}^{\infty} (ae^{j\omega})^m = \frac{ae^{j\omega}}{1-ae^{j\omega}} \quad \text{with } m = -n \\
 &= \frac{1}{1-ae^{j\omega}} \\
 &\quad \text{---} \\
 &= \frac{1-ae^{j\omega} + ae^{j\omega}(1-ae^{j\omega})}{(1-ae^{j\omega})(1-ae^{j\omega})} \\
 &= \frac{1-ae^{j\omega} - ae^{j\omega} + a^2}{1-2ae^{j\omega} + a^2} \\
 &= 1 + \frac{a^2 - 2ae^{j\omega}}{1-2ae^{j\omega} + a^2} \\
 \end{aligned}$$

(a)

Figure 5.5 (a) Signal $x[n] = a^{|n|}$ of Example 5.2 and (b) its Fourier transform ($0 < a < 1$).

16

Example 5.2 (2/3)

- Making the substitution of variables $m = -n$ in the second summation, we obtain

$$X(e^{j\omega}) = \sum_{n=0}^{\infty} (ae^{-j\omega})^n + \sum_{m=1}^{\infty} (ae^{j\omega})^m$$

- Both of these summations are infinite geometric series that we can evaluate in closed form, yielding

$$\begin{aligned}
 X(e^{j\omega}) &= \frac{1}{1-ae^{-j\omega}} + \frac{ae^{j\omega}}{1-ae^{j\omega}} \\
 &= \frac{1-ae^{j\omega} + ae^{j\omega}(1-ae^{-j\omega})}{(1-ae^{-j\omega})(1-ae^{j\omega})} = \frac{1-a^2}{1-2a \cos \omega + a^2}
 \end{aligned}$$

- In this case, $X(e^{j\omega})$ is real and is illustrated in Figure 5.5(b), again for $0 < a < 1$.

17

Example 5.2 (3/3)

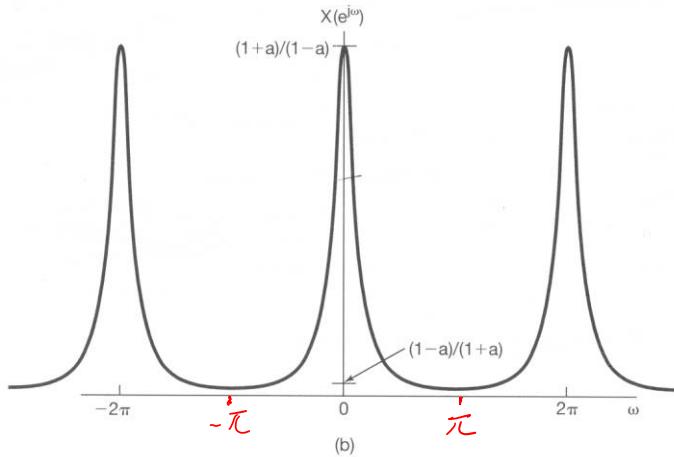


Figure 5.5 (a) Signal $x[n] = a^{|n|}$ of Example 5.2 and (b) its Fourier transform ($0 < a < 1$).

18

Example 5.3 (1/2)

- Consider the rectangular pulse

$$x[n] = \begin{cases} 1, & |n| \leq N_1 \\ 0, & |n| > N_1 \end{cases} \quad (5.10)$$

which is illustrated in Figure 5.6(a) for $N_1 = 2$.

- In this case,

$$X(e^{j\omega}) = \sum_{n=-N_1}^{N_1} e^{-j\omega n}. \quad (5.11)$$

Let $m = n + N_1$.

$$= \sum_{m=0}^{2N_1} e^{-j\omega(m-N_1)}$$

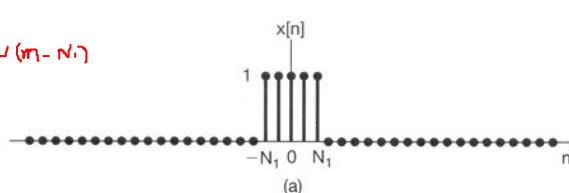


Figure 5.6 (a) Rectangular pulse signal of Example 5.3 for $N_1 = 2$ and (b) its Fourier transform.

Example 5.3 (2/2)

Using calculations similar to those employed in obtaining P.2.18 Eq. (3.104) in Example 3.12,

We can write

$$X(e^{j\omega}) = \frac{\sin \omega(N_1 + \frac{1}{2})}{\sin(\omega/2)}. \quad (5.12)$$

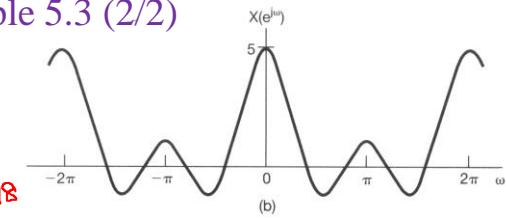


Figure 5.6 (a) Rectangular pulse signal of Example 5.3 for $N_1 = 2$ and (b) its Fourier transform.

This Fourier transform is sketched in Figure 5.6(b) for $N_1=2$. The function in eq. (5.12) is the discrete-time counterpart of the sinc function (see Example 4.4). An important difference between these two functions is that the function in eq. (5.12) is periodic with period 2π , whereas the sinc function is aperiodic.

20

5.1.3 Convergence Issues Associated with the DTFT

- For an extremely broad class of signals with infinite duration (such as the signals in Example 5.1).
- In this case, again must consider the question of convergence of the infinite summation in the analysis equation (5.9).
- The conditions guarantee the convergence of this sum are direct counterparts of CTFT convergence conditions
- Specifically, eq. (5.9) will converge either if $x[n]$ is **absolutely summable**, that is,

$$\sum_{n=-\infty}^{+\infty} |x[n]| < \infty, \quad (5.13)$$

or if the sequence has **finite energy**, that is,

$$\sum_{n=-\infty}^{+\infty} |x[n]|^2 < \infty, \quad (5.14)$$

21

5.1.3 Convergence Issues Associated with the DTFT

- In contrast to the situation for the analysis equation (5.9), there are generally **no convergence issues** associated with the synthesis equation (5.8), since the integral in this equation **is over a finite interval of integration**.
- In particular, if we approximate an aperiodic signal $x[n]$ by an integral of complex exponentials with frequencies taken over the interval $|\omega| \leq W$, i.e.,

$$\hat{x}[n] = \frac{1}{2\pi} \int_{-W}^W X(e^{j\omega}) e^{j\omega n} d\omega, \quad (5.15)$$

then $\hat{x}[n] = x[n]$ for $W = \pi$.

22

As in Figure 3.18, we would expect **not to see** any behavior like the **Gibbs phenomenon** in evaluating the discrete-time Fourier transform synthesis equation.

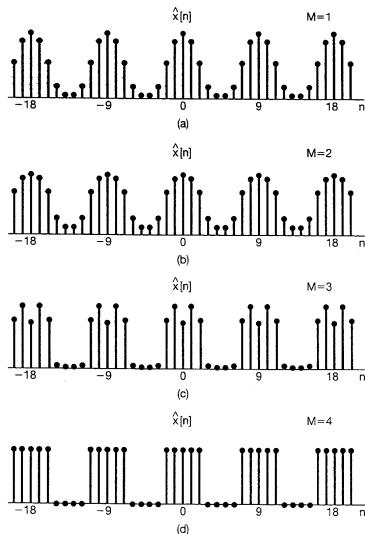


Figure 3.18 Partial sums of eqs. (3.106) and (3.107) for the periodic square wave of Figure 3.16 with $N = 9$ and $2N_1 + 1 = 5$: (a) $M = 1$; (b) $M = 2$; (c) $M = 3$; (d) $M = 4$

Example 5.4

Let $x[n]$ be the unit impulse; that is

$$x[n] = \delta[n]$$

In this case the analysis equation(5.9) is easily evaluated, yielding

$$X(e^{j\omega}) = 1.$$

In other word, just as in continuous time, the unit impulse has a Fourier transform representation consisting of **equal contributions at all frequencies**. If we then apply eq.(5.15) to this example, we obtain

$$\hat{x}[n] = \frac{1}{2\pi} \int_{-W}^W e^{j\omega n} d\omega = \frac{\sin Wn}{\pi n}. \quad (5.16)$$

This is plotted in **Figure 5.7** for several values of W . As can be seen, the frequency of the oscillations in the approximation increases as W is increased, which is similar to what we observed in the continuous-time case. On the other hand, in contrast to the continuous-time case, the amplitude of these oscillations decreases relative to the magnitude of $\hat{x}[0]$ as W is increased, and the oscillations disappear entirely for $W = \pi$.

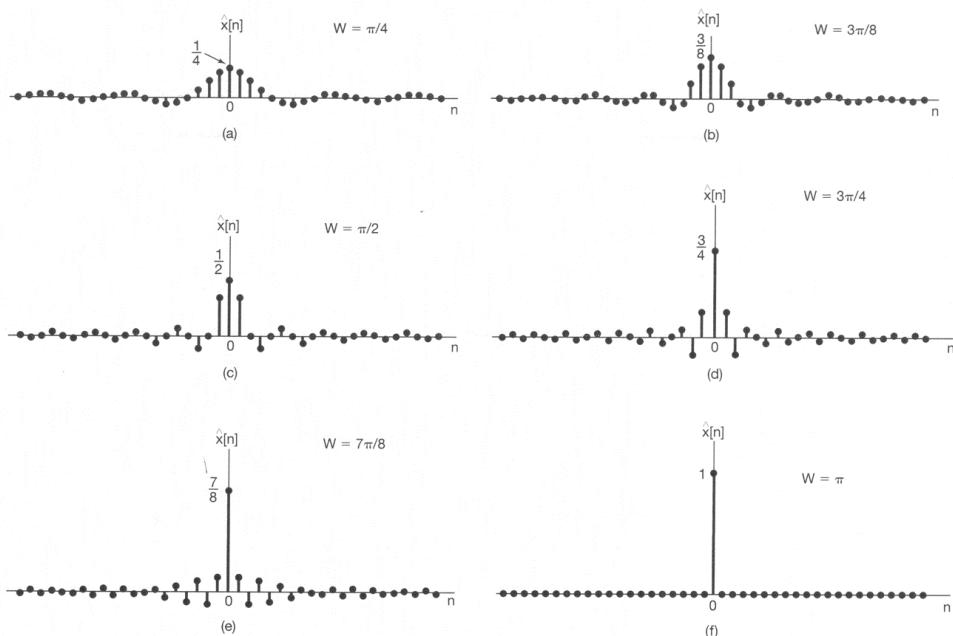


Figure 5.7 Approximation to the unit sample obtained as in eq. (5.16) using complex exponentials with frequencies $|\omega| \leq W$: (a) $W = \pi/4$; (b) $W = 3\pi/8$; (c) $W = \pi/2$; (d) $W = 3\pi/4$; (e) $W = 7\pi/8$; (f) $W = \pi$. Note that for $W = \pi$, $\hat{x}[n] = \delta[n]$.