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Chapter 5

The Discrete-Time Fourier Transform
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5.1 Representation of Aperiodic Signals: The 

Discrete-Time Fourier Transform

• Recall that in the aperiodic square wave example in 4.1

• With T→       , Tak approaches the envelope

• Consider an aperiodic sequence x[n] which is of finite duration

Finite–duration signal x[n], x[n]=0 outside –N1≤ n ≤N2

ቤ𝑇𝑎𝑘 =
2 sin𝜔 𝑇1

𝜔
𝜔=𝑘𝜔0

∞

4

• Construct a periodic sequence ෤𝑥[𝑛]

• Observe that lim
𝑁→∞

෤𝑥[𝑛] = 𝑥[𝑛]

• Since ෤𝑥[𝑛] is periodic,

෤𝑥[𝑛] = ෍

𝑘=<𝑁>

𝑎𝑘𝑒
𝑗𝑘(

2𝜋
𝑁
)𝑛

𝑎𝑘 =
1

𝑁
෍

𝑘=<𝑁>

෤𝑥[𝑛]𝑒−𝑗𝑘(
2𝜋
𝑁
)𝑛

(5.1)

(5.2)
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• Define the function 

𝑎𝑘 =
1

𝑁
෍

𝑛=−𝑁1

𝑁2

෤𝑥[𝑛]𝑒−𝑗𝑘(
2𝜋
𝑁
)𝑛 =

1

𝑁
෍

𝑛=−∞

∞

𝑥[𝑛]𝑒−𝑗𝑘(
2𝜋
𝑁
)𝑛

𝑋(𝑒𝑗𝜔) = ෍

𝑛=−∞

∞

𝑥[𝑛]𝑒−𝑗𝜔𝑛

𝑎𝑘 =
1

𝑁
𝑋(𝑒𝑗𝑘𝜔0), where 𝜔0 =

2𝜋

𝑁
(5.5)

6

• Combining (5.1) and (5.5) yields

• As N→∞, ෤𝑥[𝑛] = 𝑥[𝑛], 𝜔0 =
2𝜋

𝑁
→ 0

෤𝑥[𝑛] = ෍

𝑘=<𝑁>

1

𝑁
𝑋(𝑒𝑗𝑘𝜔0)𝑒𝑗𝑘𝜔0𝑛

=
1

2𝜋
෍

𝑘=<𝑁>

𝑋(𝑒𝑗𝑘𝜔0) 𝑒𝑗𝑘𝜔0𝑛𝜔0

(5.6)

(5.7)

0
00 )(

2

1
lim][~lim 



 njk

Nk

jk

NN
eeXnx 

=
→→

=

𝜔0 =
2𝜋

𝑁
→

1

𝑁
= 
𝜔0

2𝜋
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As N increases 𝜔0 decreases, and as N→∞, Eq. (5.7) passes to an integral 

and 

• 𝐾 =< 𝑁 >,𝜔0 =
2𝜋

𝑁

𝑥 𝑛 =
1

2𝜋
න

2𝜋

𝑋(𝑒𝑗𝜔)𝑒𝑗𝜔𝑛𝑑𝜔

• X(ej) , ejn , and thus X(ej)ejn are periodic with period 2π (Fig 
5.2). The interval of integral can be any one with length 2π.

෤𝑥[𝑛] = 𝑥[𝑛]
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• Discrete-Time Fourier Transform pair

𝑥[𝑛] =
1

2𝜋
න

2𝜋

𝑋(𝑒𝑗𝜔) 𝑒𝑗𝜔𝑛𝑑𝜔

𝑋(𝑒𝑗𝜔) = ෍

𝑛=−∞

∞

𝑥[𝑛]𝑒−𝑗𝜔𝑛

(5.8)

(5.9)

11
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Example 5.1 (1/3)

Consider the signal

𝑥 𝑛 = 𝑎𝑛𝑢 𝑛 , 𝑎 < 1.

In this case,

𝑋 𝑒𝑗𝜔 = ෍

𝑛=−∞

+∞

𝑎𝑛𝑢 𝑛 𝑒−𝑗𝜔𝑛

෍

𝑛=0

∞

𝑎𝑒−𝑗𝜔 𝑛 =
1

1 − 𝑎𝑒−𝑗𝜔
.

The magnitude and phase of 𝑋 𝑒𝑗𝜔 are shown in 

Figure 5.4(a) for a > 0 and in figure 5.4(b) for a < 0. 
Note that all of these functions are periodic in 𝜔 with 
period 2𝜋.

12
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Example 5.1 (2/3)
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Example 5.1 (3/3)
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Example 5.2 (1/3)
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Example 5.2 (2/3)

• Making the substitution of variables 𝑚 = −𝑛 in the 
second summation, we obtain 

𝑋 𝑒𝑗𝜔 = ෍

𝑛=0

∞

𝑎𝑒−𝑗𝜔 𝑛 + ෍

𝑚=1

∞

𝑎𝑒𝑗𝜔 𝑚

• Both of these summations are infinite geometric series 
that we can evaluate in closed form, yielding

𝑋 𝑒𝑗𝜔 =
1

1 − 𝑎𝑒−𝑗𝜔
+

𝑎𝑒𝑗𝜔

1 − 𝑎𝑒𝑗𝜔

=
1 − 𝑎𝑒𝑗𝜔 + 𝑎𝑒𝑗𝜔(1 − 𝑎𝑒−𝑗𝜔)

(1 − 𝑎𝑒−𝑗𝜔)(1 − 𝑎𝑒𝑗𝜔)
=

1 − 𝑎2

1 − 2𝑎 𝑐𝑜𝑠𝜔 + 𝑎2

• In this case, 𝑋 𝑒𝑗𝜔 is real and is illustrated in Figure 
5.5(b), again for 0<a<1.
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Example 5.2 (3/3)

Example 5.3 (1/2)

• Consider the rectangular pulse

𝑥 𝑛 = ቊ
1, |𝑛| ≤ 𝑁1

0, |𝑛| > 𝑁1
(5.10)

which is illustrated in Figure 5.6(a) for 𝑁1 = 2.

• In this case,

𝑋 𝑒𝑗𝜔 = ෍

𝑛=−𝑁1

𝑁1

𝑒−𝑗𝜔𝑛 . (5.11)

19
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Using calculations similar to

those employed in obtaining

Eq. (3.104) in Example 3.12,

We can write

𝑋 𝑒𝑗𝜔 =
sin𝜔(𝑁1+

1
2)

sin(𝜔/2)
. 5.12

This Fourier transform is sketched in Figure 5.6(b) for N1=2. The 

function in eq. (5.12) is the discrete-time counterpart of the sinc

function (see Example 4.4). An important difference between these 

two functions is that the function in eq. (5.12) is periodic with period 

2𝜋, whereas the sinc function is aperiodic.

Example 5.3 (2/2)

5.1.3 Convergence Issues Associated with the DTFT

• For an extremely broad class of signals with infinite duration (such as the
signals in Example 5.1).

• In this case, again must consider the question of convergence of the infinite
summation in the analysis equation (5.9).

• The conditions guarantee the convergence of this sum are direct
counterparts of CTFT convergence conditions

• Specifically, eq. (5.9) will converge either if x[n] is absolutely summable,
that is,

෍

𝑛=−∞

+∞

𝑥 𝑛 < ∞, (5.13)

or if the sequence has finite energy, that is,

෍

𝑛=−∞

+∞

𝑥 𝑛 2 < ∞, (5.14)

21
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5.1.3 Convergence Issues Associated with the DTFT

• In contrast to the situation for the analysis equation (5.9), there are 

generally no convergence issues associated with the synthesis 

equation (5.8), since the integral in this equation is over a finite 

interval of integration.

• In particular, if we approximate an aperiodic signal x[n] by an integral

of complex exponentials with frequencies taken over the interval

𝜔 ≤ 𝑊, i.e.,

ො𝑥 𝑛 =
1

2𝜋
න
−𝑊

𝑊

𝑋 𝑒𝑗𝜔 𝑒𝑗𝜔𝑛𝑑𝜔, (5.15)

then ො𝑥 𝑛 = 𝑥[𝑛] for 𝑊 = 𝜋.

As in Figure 3.18, we would expect not to see any behavior like the 

Gibbs phenomenon in evaluating the discrete-time Fourier transform 

synthesis equation.
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Example 5.4

Let x[n] be the unit impulse; that is

𝑥 𝑛 = 𝛿[𝑛]
In this case the analysis equation(5.9) is easily evaluated, yielding

𝑋 𝑒𝑗𝜔 = 1.

In other word, just as in continuous time, the unit impulse has a Fourier transform 
representation consisting of equal contributions at all frequencies. If we then apply eq.(5.15) 
to this example, we obtain

ො𝑥 𝑛 =
1

2𝜋
න
−𝑊

𝑊

𝑒𝑗𝜔𝑛𝑑𝜔 =
sin𝑊𝑛

𝜋𝑛
. (5.16)

This is plotted in Figure 5.7 for several values of W. As can be seen, the frequency of the 
oscillations in the approximation increases as W is increased, which is similar to what we 
observed in the continuous-time case. On the other hand, in contrast to the continuous-time 
case, the amplitude of these oscillations decreases relative to the magnitude of ො𝑥 0 as W is 
increased, and the oscillations disappear entirely for 𝑊 = 𝜋.

෍

𝑛=−∞

∞

𝑥[𝑛]𝑒−𝑗𝜔𝑛

=෍𝛿[𝑛] 𝑒−𝑗𝜔𝑛 = 1
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