Chapter 5

The Discrete-Time Fourier Transform
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5.1 Representation of Aperiodic Signals: The
Discrete-Time Fourier Transform

 Recall that in the aperiodic square wave example in 4.1
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* WithT— « , Ta,approaches the envelope
+ Consider an aperiodic sequence x[n] which is of finite duration

il

Finite—duration signal x[n], X[n]=0 outside —-N,<n <N,

« Construct a periodic sequence X[n]

» Observe that I\llim X[n] = x[n]
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+ Since X[n] is periodic,
. 2T

X[n] = Z aie’ " (5.1)
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» Define the function

[oe]

X(el®) = Z x[n]e jon

n=-—o

a =1X(ejk“’0) where w _ 55
k N ) 0 N (5.5)

« Combining (5.1) and (5.5) yields wyg=Z>-=%
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Figure 5.1 (a) Finite-duration signal x[n]; (b) periodic signal X[n] con-
structed to be equal to x[n] over one period.

As N increases w, decreases, and as N—oo, Eq. (5.7) passes to an integral
and  %[n] = x[n]

2T

* K=<N>,(UO=W

lim X[n] = I|m 2_ ZX(e’k“’O Je ke gy

N—o 7T k=<N>

1 . .
x[n] = jX(ef‘“)ef“mdw

« X(el9) , el"  and thus X(el“)el*" are periodic with period 2z (Fig
5.2). The interval of integral can be any one with length 2.
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Discrete-Time Fourier Transform pair
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X(e/?) = E x[n]e™’ (5.9)
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Figure 5.3 (a) Discrete-time signal x;{n). (b) Fourier transform of x[n].
Note that X;(e/) is concentrated near w = 0, *27, +4x, .. .. (c) Discrete-
time signal x:[n]. (d) Fourier transform of x,[n). Note that X(e*') is concen-
trated near w = ==, *3m, ... 1
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Example 5.1 (1/3)
Consider the signal

x[n] = a™u[n], la| < 1.
In this case,
+00

X(ej“’)= Z amu[n] e J@n

%) n=-o

1
—JW\n —

Z(ae ) 1—ae J®

n=0

The magnitude and phase of X(e/) are shown in
Figure 5.4(a) for a>0 and in figure 5.4(b) for a < 0.

Note that all of these functions are periodic in w with
period 2.
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Example 5.1 (2/3)
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Figure 5.4 Magnitude and phase of the Fourier transform of Example 5.1

for (a) a=>0and (b) a< 0 13
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Example 5.1 (3/3)
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(b;\ ~tan~" (jaj//1 — a?)

Figure 5.4 Magnitude and phase of the Fourier transform of Example 5.1
for (a) a>0and (b) a< 0. 14
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Figure 5.4 Magnitude and phase of the Fourier transform of Example 5.1
for (a) a>0and (b) a< 0.
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Example 5.2 (1/3)

Let
x[n] = a", al < 1

This signal is sketched for 0 < @ < 1 in Figure 5.5(a). Its Fourier transform is obtained
from eq. (5.9):
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Figure 5.5 (a) Signal x[n] = a" of Example 5.2 and (b) its Fourier trans-
form (0 < a < 1). 16

Example 5.2 (2/3)

» Making the substitution of variables m = —n in the
second summation, we obtain

X(ef®) = Z(ae‘j‘”)” + i(aej“’)m

+ Both of these summations are infinite geometric series
that we can evaluate in closed form, yielding

X( jw) B 1 N ae/®

_ ¢ T 1—aej®  1—qelv

_1-ael”+ae!’(1—ae™’?) 1— a?
(1—ae /®)(1—ae/®)  1-2acosw+ a?

» In this case, X(e/) is real and is illustrated in Figure
5.5(b), again for O<a<1.
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Example 5.2 (3/3)

X(e")
(1+a)/(1—a)
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L
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Figure 5.5 (a) Signal x[n] = a" of Example 5.2 and (b) its Fourier trans-
form (0 <a<1).
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Example 5.3 (1/2)

» Consider the rectangular pulse

1, In| <N,
x[n] = {O, n| > N, (5.10)

which is illustrated in Figure 5.6(a) for N, = 2.

* In this case,
N
X(e/®) = 2 e~jon, (5.11)
n=-N,
Lﬂj- W = H+T\!|. 1,\" i y x[n]
:'Zé\‘u(‘ﬂ— D ;
m=a

-N; 0 Ny n
(@)

Figure 5.6 (a) Rectangular pulse signal of Example 5.3 for N; = 2 and
(b) its Fourier transform.
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Example 5.3 (2/2) X

Using calculations similar to
those employed in obtaining ,P,Ll% ~2m

(b)

Eq (3104) In Example 312)’ Figure 5.6 (a) Rectangular pulse signal of Example 5.3 for Ay = 2 and

(b) its Fourier transform

We can write

(5.12)

This Fourier transform is sketched in Figure 5.6(b) for N,=2. The
function in eq. (5.12) is the discrete-time counterpart of the sinc
function (see Example 4.4). An important difference between these
two functions is that the function in eq. (5.12) is periodic with period
2m, whereas the sinc function is aperiodic.
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5.1.3 Convergence Issues Associated with the DTFT

For an extremely broad class of signals with infinite duration (such as the
signals in Example 5.1).

In this case, again must consider the question of convergence of the infinite
summation in the analysis equation (5.9).

The conditions guarantee the convergence of this sum are direct
counterparts of CTFT convergence conditions

Specifically, eq. (5.9) will converge either if x[n] is absolutely summable,
that is,

+00
Z |x[n]| < oo, (5.13)
n=-—oo
or if the sequence has finite energy, that is,
+00
Z |x[n]|? < oo, (5.14)
n=-—oco

21
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5.1.3 Convergence Issues Associated with the DTFT

* In contrast to the situation for the analysis equation (5.9), there are
generally no convergence issues associated with the synthesis
equation (5.8), since the integral in this equation is over a finite
interval of integration.

« In particular, if we approximate an aperiodic signal x[n] by an integral
of complex exponentials with frequencies taken over the interval
lw| < W, i.e.,

1 (" L
£[n] = — j X(e/®)e/"dw, (5.15)
21 ) _y
then X[n] = x[n] for W = m.

22

As in Figure 3.18, we would expect not to see any behavior like the
Gibbs phenomenon in evaluating the discrete-time Fourier transform
synthesis equation.

4} M=1

el

square wave of Figure 3.16 with
2 M=3 N=9and2N1+1=5:(a)M=1;
MM=21cIM=3(dM=14
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Example 5.4 S xfuje-sor

Let x[n] be the unit impulse; that is o
x[n] = 8[n] ZZé[n]e jon =1
In this case the analysis equation(5.9) is easily evaluated, yielding

X(e/®) = 1.

In other word, just as in continuous time, the unit impulse has a Fourier transform
representation consisting of equal contributions at all frequencies. If we then apply eq.(5.15)
to this example, we obtain
1 (v . i
X[n] =— e/"dw = ——. (5.16)

This is plotted in Figure 5.7 for several values of W. As can be seen, the frequency of the
oscillations in the approximation increases as W is increased, which is similar to what we
observed in the continuous-time case. On the other hand, in contrast to the continuous-time
case, the amplitude of these oscillations decreases relative to the magnitude of £[0] as W is
increased, and the oscillations disappear entirely for W = m.

Xn] W= /4 ;[”] W = 3w/8
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Figure 5.7  Approximation to the unit sample obtained as in eq. (5.16) using complex
exponentials with frequencies w| = W: (a) W = «/4; (b) W = 37/8; (c) W = =/2;
(d) W = 3u/4; (&) W = T#/8; (f) W = . Note that for W = =, X[n] = 6[n].

2022/6/15

25

12



