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5.2 The Fourier Transform for 

Periodic Signals

As in the continuous-time cases, periodic signals can be incorporated within the
framework of the discrete-time Fourier transform by interpreting the transform of a
periodic signal as an impulse train in the frequency domain. To derive the form of
this representation, consider the signal

𝑥 𝑛 = 𝑒𝑗𝜔0𝑛 (5.17)
In continuous time, we saw that the Fourier transform of 𝑒𝑗𝜔0𝑡 can be interpreted as
an impulse at 𝜔 = 𝜔0. Therefore, we might expect the same type of transform to
result for the discrete-time signal of Eq. (5.17). However, the discrete-time Fourier
transform must be periodic in 𝜔 with period 2𝜋. This then suggests that the Fourier
transform of 𝑥 𝑛 in Eq. (5.17) should have impulses at 𝜔0, 𝜔0 ±2𝜋, 𝜔0 ±4𝜋, and
so on. In fact, the Fourier transform of 𝑥 𝑛 is the impulse train

𝑋 𝑒𝑗𝜔 = ෍

𝑙=−∞

+∞

2𝜋𝛿 𝜔 − 𝜔0 − 2𝜋𝑙 , (5.18)

which is illustrated in Figure 5.8. 
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In order to check the validity of this expression, we must evaluate its inverse 
transform. Substituting Eq. (5.18) into the synthesis Eq. (5.8), we find that
1

2𝜋
2𝜋𝑋׬ 𝑒𝑗𝜔 𝑒𝑗𝜔𝑛𝑑𝜔 =

1

2𝜋
∞−=2𝜋σ𝑙׬

+∞ 2𝜋𝛿 𝜔 − 𝜔0− 2𝜋𝑙 𝑒𝑗𝜔𝑛d𝜔

Note that any interval of length 2𝜋 includes exactly one impulse in the summation 
given in Eq. (5.18). Therefore, if the interval of integration chosen includes the 
impulse located at 𝜔0+ 2𝜋𝑟, then

1

2𝜋
න
2𝜋

𝑋 𝑒𝑗𝜔 𝑒𝑗𝜔𝑛𝑑𝜔 = 𝑒𝑗 𝜔0+2𝜋𝑟 𝑛 = 𝑒𝑗𝜔0𝑛

Now consider a periodic sequence x[n] with period N and with the Fourier series 
representation

𝑥 𝑛 = ෍

𝑘=<𝑁>

𝑎𝑘𝑒
𝑗𝑘

2𝜋
𝑁

𝑛
(5.19)

In this case, the Fourier transform is

𝑋 𝑒𝑗𝜔 = ෍

𝑘=−∞

+∞

2𝜋𝑎𝑘𝛿(𝜔 −
2𝜋𝑘

𝑁
) 5.20

so that the Fourier transform of a periodic signal can be directly constructed from 
its Fourier coefficients.

• To verify that Eq. (5.20) is in fact correct, note that x[n] in Eq. 

(5.19) is a linear combination of signals of the form in Eq. (5.17), 

and thus the Fourier transform of x[n] must be a linear combination 

of transforms of the form of Eq. (5.18). 

• In particular, suppose that we choose the interval of summation in 

Eq. (5.19) as k=0,1,…, N-1, so that

𝑥 𝑛 = 𝑎0+ 𝑎1𝑒
𝑗

2𝜋

𝑁
𝑛

+𝑎2𝑒
𝑗2

2𝜋

𝑁
𝑛
+⋯+ 𝑎𝑁−1𝑒

𝑗 𝑁−1
2𝜋

𝑁
𝑛
. (5.21)

• Thus, x[n] is a linear combination of signals, as in Eq. (5.17), with 

𝜔0=0, 2𝜋/N, 4𝜋/N, …, (N-1) 2𝜋/N. The resulting Fourier transform 

is illustrated in Figure 5.9. 
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• In Figure 5.9(a), we have depicted the Fourier transform of the 

first term on the right-hand side of Eq. (5.21): 

– The Fourier transform of the constant signal 𝑎0 = 𝑎0𝑒
𝑗0∙𝑛 is a periodic 

impulse train, as in Eq. (5.18), with 𝜔0=0 and a scaling of 2𝜋𝑎0 on 

each of the impulses. 

• From Chapter 4 we know that Fourier series coefficients ak are 

periodic with period N, so that 2𝜋a0= 2𝜋aN= 2𝜋a-N. 

• In Figure 5.9(b) we have illustrated the Fourier transform of 

the second term in Eq. (5.21), where we have again used Eq. 

(5.18), in this case for 𝑎1𝑒
𝑗
2𝜋

𝑁
𝑛

, and the fact that 2𝜋a1= 

2𝜋aN+1= 2𝜋a-N+1. 

6
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• Similarly, Fig. 5.9(c) depicts the final term.

• Finally, Fig. 5.9(d) depicts the entire expression for 

𝑋 𝑒𝑗𝜔

• Because of the periodicity of the 𝑎𝑘, 𝑋 𝑒𝑗𝜔 can be 

interpreted as a train of impulses occurring at 

multiples of the fundamental frequency 𝜔 =2𝜋𝑘/N , 

with the area of the impulse located at  being 2𝜋𝑎𝑘.

𝑋 𝑒𝑗𝜔 = ෍

𝑘=−∞

+∞

2𝜋𝑎𝑘𝛿(𝜔 −
2𝜋𝑘

𝑁
) 5.20

• Example 5.5

5.2 The Fourier Transform for Periodic Signals
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• Example 5.6

As we discussed in Section 5.1, the Discrete-Time

Fourier transform is always periodic in 𝜔 with

period 2𝜋; i, e.,

This is in contrast to the continuous-time Fourier

Transform, which in general is not periodic.

5.3 Properties of the Discrete-Time 

Fourier Transform
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5.3 Properties of the Discrete-Time Fourier Transform
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5.3 Properties of the Discrete-Time 

Fourier Transform

• Example 5.7
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5.3 Properties of the Discrete-Time Fourier 

Transform

• Conjugation and Conjugate Symmetry (1/2)

If

then 

If           is real valued, its transform            is conjugate symmetric. 

That is

From this, it follows that                    is an even function of 

and                     an odd function of      .
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5.3 Properties of the Discrete-Time Fourier Transform

• Conjugation and Conjugate Symmetry (2/2)

and

where       and       denote the even and odd parts, respectively.
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5.3 Properties of the Discrete-Time Fourier Transform

• Differencing and Accumulation
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2. Summation:
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5.3 Properties of the Discrete-Time Fourier Transform

EXAMPLE 5.8
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5.3 Properties of the Discrete-Time Fourier Transform

• Time Reversal

Let  x[n] be a signal with spectrum            , and consider

the transform             of                         From eq.(5.9),

Substituting                 into eq.(5.40),we obtain 

That is ,
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5.3 Properties of the Discrete-Time Fourier Transform

• Time Expansion

• Recall in continuous-time case , where a is a real number. 

• In constructing similar x[an], note that:

(i)   a has to be an integer; otherwise, x[an] is not defined in general.

(ii) If  a is an integer, say 2, then in x[2n] all odd sample will be lost.

• Instead, we define a “slow down” version of          .                               
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5.3 Properties of the Discrete-Time Fourier Transform

20

5.3 Properties of the Discrete-Time Fourier Transform

• Time Expansion

𝑋 𝑘 𝑒𝑗𝜔 = ෍

𝑛=−∞

+∞

𝑥 𝑘 𝑛 𝑒−𝑗𝜔𝑛 = ෍

𝑟=−∞

+∞

𝑥 𝑘 𝑟𝑘 𝑒−𝑗𝜔𝑟𝑘

= ෍

𝑟=−∞

+∞

𝑥 𝑟 𝑒−𝑗(𝑘𝜔)𝑟 = 𝑋(𝑒𝑗𝑘𝜔)

𝑥 𝑘 [𝑛]
𝐹𝑇
𝑋(𝑒𝑗𝑘𝜔)
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5.3 Properties of the Discrete-Time Fourier Transform

22

5.3 Properties of the Discrete-Time Fourier Transform

EXAMPLE 5.9 (1/3)
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5.3 Properties of the Discrete-Time Fourier Transform

EXAMPLE 5.9 (2/2)

24

5.3 Properties of the Discrete-Time Fourier Transform

EXAMPLE 5.9 (3/3)
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5.3 Properties of the Discrete-Time 

Fourier Transform
• Differentiation in Frequency

Again, let

𝑥[𝑛]
𝐹𝑇
𝑋(𝑒𝑗𝜔)

If we use the definition of 𝑋(𝑒𝑗𝜔) in the analysis Eq. (5.9) and 
differentiate both sides, we obtain

𝑑𝑋(𝑒𝑗𝜔)

𝑑𝜔
= ෍

𝑛=−∞

+∞

−𝑗𝑛𝑥 𝑛 𝑒−𝑗𝜔𝑛.

The right-hand side of this equation is the Fourier transform of –jnx[n]. 
Therefore, multiplying both sides by j, we see that

𝑛𝑥 𝑛
𝐹𝑇
𝑗
𝑑𝑋 𝑒𝑗𝜔

𝑑𝜔
. (5.46)

26

5.3 Properties of the Discrete-Time Fourier Transform

• Parseval’s Relation

1. The left-hand side of this equation is the total energy in the 

signal          .

2. is referred to as the energy-time-density spectrum of the 

signal         .

This equation is the counterpart for aperiodic signal of Parseval’s

relation.


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5.3 Properties of the Discrete-Time Fourier Transform

EXAMPLE 5.10 (1/3)

22

2
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28

5.3 Properties of the Discrete-Time Fourier Transform

EXAMPLE 5.10 (2/3)
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5.3 Properties of the Discrete-Time Fourier Transform

EXAMPLE 5.10 (3/3)

30

5.4 The Convolution Property

• The Convolution Property

𝑦 𝑛 = 𝑥 𝑛 ∗ ℎ 𝑛

and

𝑌 𝑒𝑗𝜔 = 𝑋 𝑒𝑗𝜔 𝐻(𝑒𝑗𝜔)
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5.4 The Convolution Property

EXAMPLE 5.11

32

5.4 The Convolution Property

EXAMPLE 5.12 (1/2)
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5.4 The Convolution Property

EXAMPLE 5.12 (2/2)

34

5.4 The Convolution Property

EXAMPLE 5.13 (1/4)
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5.4 The Convolution Property

EXAMPLE 5.13 (2/4)

36

5.4 The Convolution Property

EXAMPLE 5.13 (3/4)
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5.4 The Convolution Property

EXAMPLE 5.13 (4/4)

38

5.4 The Convolution Property

EXAMPLE 5.14 (1/3)
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5.4 The Convolution Property

EXAMPLE 5.14 (2/3)

40

5.4 The Convolution Property
EXAMPLE 5.14 (3/3)
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5.5 The Multiplication Property

• Let 𝑦 𝑛 = 𝑥1 𝑛 𝑥2 𝑛
Then 

𝑌 𝑒𝑗𝜔 = ෍

𝑛=−∞

∞

𝑦[𝑛] 𝑒−𝑗𝜔𝑛 = ෍

𝑛=−∞

∞

𝑥1 𝑛 𝑥2[𝑛] 𝑒
−𝑗𝜔𝑛

So

𝑌 𝑒𝑗𝜔 = ෍

𝑛=−∞

∞

𝑥2[𝑛] {
1

2𝜋
න
2𝜋

𝑋1(𝑒
𝑗𝜃)𝑒𝑗𝜃𝑛𝑑𝜃}𝑒−𝑗𝜔𝑛

𝑌 𝑒𝑗𝜔 =
1

2𝜋
{න
2𝜋

𝑋1(𝑒
𝑗𝜃)[ ෍

𝑛=−∞

∞

𝑥2 𝑛 𝑒−𝑗 𝜔−𝜃 𝑛]𝑑𝜃}

𝑌 𝑒𝑗𝜔 =
1

2𝜋
න
2𝜋

𝑋1(𝑒
𝑗𝜃)𝑋2(𝑒

𝑗 𝜔−𝜃 )𝑑𝜃

42

5.5 The Multiplication Property

EXAMPLE 5.15 (1/3)
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5.5 The Multiplication Property

EXAMPLE 5.15 (2/3)

44

5.5 The Multiplication Property

EXAMPLE 5.15 (3/3)
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5.6 Tables of Fourier Transform Properties and Basic 

Fourier Transform Pairs

• In Table 5.1, we summarize a number of important 

properties of the discrete-time Fourier transform and 

indicate the section of the text in which each is discussed. 

• In Table 5.2, we summarize some of the basic and most 

important discrete-time Fourier transform pairs. Many of 

these have been derived in examples in the chapter.

(followed by the next page)P.423



2022/6/2

24

P.423

(followed by the next page)P.424
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5.7 Duality
• Duality in Discrete-time Fourier series

Consider two periodic sequences with period N, related through the 
summation 

𝑓 𝑚 =
1

𝑁
෍

𝑟=<𝑁>

𝑔[𝑟]𝑒
−𝑗𝑟

2𝜋
𝑁

𝑚

• Let m=k, r=n.

𝑓 𝑘 =
1

𝑁
෍

𝑛=<𝑁>

𝑔 𝑛 𝑒
−𝑗𝑘

2𝜋
𝑁

𝑛
(5.65)

𝑥[𝑛]
𝐹𝑆

𝑎𝑘

𝑔 𝑛
𝐹𝑆

𝑓[𝑘] 5.66

• If we let  m=n and r=-k, Eq. (5.65) becomes

𝑓 𝑛 = ෍

𝑘=<𝑁>

1

𝑁
𝑔 −𝑘 𝑒

𝑗𝑘
2𝜋
𝑁

𝑛

𝑓 𝑛
𝐹𝑆 1

𝑁
𝑔 −𝑘 (5.67)



2022/6/2

26

5.7 Duality

𝑥 𝑛 − 𝑛0
𝐹𝑆

𝑎𝑘𝑒
−𝑗𝑘

2𝜋
𝑁

𝑛0 (5.68)

and  𝑒𝑗𝑚
2𝜋

𝑁
𝑛
𝑥[𝑛]

𝐹𝑆
𝑎𝑘−𝑚 (5.69)

෍

𝑟=<𝑁>

𝑥 𝑟 𝑦[𝑛 − 𝑟]
𝐹𝑆

𝑁𝑎𝑘𝑏𝑘 (5.70)

𝑥 𝑛 𝑦 𝑛
𝐹𝑆

෍

𝑙=<𝑁>

𝑎𝑙𝑏𝑘−𝑙 (5.71)

52

5.7 Duality

EXAMPLE 5.16 (1/2)
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5.7 Duality

EXAMPLE 5.16 (2/2)

5.7 Duality

Duality between the Discrete-Time Fourier Transform and 

the Continuous-Time Fourier Series

[eq. (5.8)]

(5.73)

[eq. (5.9)]

(5.74)

[eq. (5.38)]

x 𝑡 = σ𝑘=−∞
+∞ 𝑎𝑘𝑒

𝑗𝑘𝜔0𝑡 (5.75)

[eq. (5.39)]

𝑎𝑘 =
1

𝑇
𝑇׬ 𝑥(𝑡)𝑒−𝑗𝑘𝜔0𝑡𝑑𝑡 (5.76)

54
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55

5.7 Duality

EXAMPLE 5.17 (1/2)

56

5.7 Duality
EXAMPLE 5.17 (2/2)
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57

5.7 Duality

TABLE 5.3

5.8 Systems Characterized By Linear Constant-

Coefficient Difference Equations

58

(5.78)

(5.79)

෍

𝑘=0

𝑁

𝑎𝑘𝑦 𝑛 − 𝑘 = ෍

𝑘=0

𝑀

𝑏𝑘𝑥[𝑛 − 𝑘]

𝐻 𝑒𝑗𝜔 =
𝑌(𝑒𝑗𝜔)

𝑋(𝑒𝑗𝜔)

෍

𝑘=0

𝑁

𝑎𝑘𝑒
−𝑗𝑘𝜔𝑌 𝑒𝑗𝜔 =෍

𝑘=0

𝑀

𝑏𝑘𝑒
−𝑗𝑘𝜔𝑋 𝑒𝑗𝜔

𝐻 𝑒𝑗𝜔 =
𝑌(𝑒𝑗𝜔)

𝑋(𝑒𝑗𝜔)
=
σ𝑘=0
𝑀 𝑏𝑘𝑒

−𝑗𝑘𝜔

σ𝑘=0
𝑁 𝑎𝑘𝑒

−𝑗𝑘𝜔 (5.80)
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59

EXAMPLE 5.18

60

EXAMPLE 5.19
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61

EXAMPLE 5.20 (1/2)

62

EXAMPLE 5.20(2/2)
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Homework (新版) 

5.3, 5.4, 5.6, 5.8, 5.10, 5.13, 5.14, 5.20, 5.21, 5.32, 5.35

5.32舊版沒有
Homework (舊版) 

5.3, 5.4, 5.6, 5.8, 5.9, 5.12, 5.13, 5.18, 5.19, 5.29

• 5.32. The Fourier transform of a discrete-time 

signal x[n] is

X(𝑒𝑗ω) = 𝑒𝑗2ω 1 − 𝑒−𝑗3ω .

Completely specify x[n].


