5.2 The Fourier Transform for
Periodic Signals

As in the continuous-time cases, periodic signals can be incorporated within the
framework of the discrete-time Fourier transform by interpreting the transform of a
periodic signal as an impulse train in the frequency domain. To derive the form of
this representation, consider the signal

x[n] = e/@" (5.17)
In continuous time, we saw that the Fourier transform of e/:¢ can be interpreted as
an impulse at w = w,. Therefore, we might expect the same type of transform to
result for the discrete-time signal of Eq. (5.17). However, the discrete-time Fourier
transform must be periodic in w with period 27, This then suggests that the Fourier
transform of x[n] in Eq. (5.17) should have impulses at w,, w, +2r, w, +4m, and
so on. In fact, the Fourier transform of x[n] is the impulse train

+0o0
X(ed®) = z 218 (w — wy — 271l), (5.18)
l=—0o0
which is illustrated in Figure 5.8.
X(e")
2%

Figure 5.8 Fourier transform of
x[n] = e/,
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In order to check the validity of this expression, we must evaluate its inverse
transform. Substituting Eg. (5.18) into the synthesis Eq. (5.8), we find that

%fzﬂX(eﬂ“)ei“’"dw = %fzﬂzlfﬂw 2n8(w — wy — 21l) e/ dw

Note that any interval of length 2rr includes exactly one impulse in the summation
given in Eq. (5.18). Therefore, if the interval of integration chosen includes the
impulse located at w, + 2mr, then

. X(ejw)ejmndw — ej(w0+2nr)n = eJw,n
21 Jyn

Now consider a periodic sequence x[n] with period N and with the Fourier series
representation

. (2T
x[n] = z ake]k(W)n (5.19)
k=<N>
In this case, the Fourier transform is
. — 2k
X(e/®) = 2na; b (w — T) (5.20)

k=—00

so that the Fourier transform of a periodic signal can be directly constructed from
its Fourier coefficients. — 4 “+Frme. F@(;D%c S\grals

bt
K G = k%ﬂtﬂkgfw-kup)lxdt)zkia*eé

» To verify that Eq. (5.20) is in fact correct, note that x[n] in Eq.
(5.19) is a linear combination of signals of the form in Eq. (5.17),
and thus the Fourier transform of x[n] must be a linear combination
of transforms of the form of Eq. (5.18).

* In particular, suppose that we choose the interval of summation in
Eq. (5.19) as k=0,1,..., N-1, so that

27
—n

x[n] = a, + alej(%n)n+azej2(N + -+ aN_lej(N_l)(ZWn)". (5.21)

* Thus, x[n] is a linear combination of signals, as in Eq. (5.17), with
wy=0, 21/N, 4m/N, ..., (N-1) 2r/N. The resulting Fourier transform
is illustrated in Figure 5.9.
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 In Figure 5.9(a), we have depicted the Fourier transform of the
first term on the right-hand side of Eq. (5.21):

— The Fourier transform of the constant signal a, = a,e/™ is a periodic
impulse train, as in Eq. (5.18), with w,=0 and a scaling of 2ma, on
each of the impulses.

» From Chapter 4 we know that Fourier series coefficients a, are
periodic with period N, so that 2ra,= 2may= 2ra..

 In Figure 5.9(b) we have illustrated the Fourier transform of
the second term in Eqg. (5.21), where we have again used Eq.

L(2TC
(5.18), in this case for a e’ (W)", and the fact that 2rra, =
2may = 2T .-

2mag = 2ma_y 2wag 2may = 2may
2m 0 2m
(a)
2mwa; = 2ma_py 4 2ma 2may = 27ay 4+ ¢
( b1y 2m ) (2m) o ®
(N W) v+ iE)
)
( 2: o )\
(N-12x) == (o n%j
2may_q = 2ma_y 2may ;= 2ma_; 2way 4
©
2ma_y 2wag 2may
IZna N1 [ 2ma, | I 2may.y '
‘ 2m 71707 ; 2m
2ma_y 4 2ma_4 2may 4
(d)

Figure 5.9 Fourier transform of a discrete-time periodic signal: (a) Fourier transform

of the first term on the right-hand side of eq. (5.21); (b) Fourier transform of the sec-

ond term in eq. (5.21); (c) Fourier transform of the last term in eq. (5.21); (d) Fourier 6
transform of x[n] in eq (5.21)
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» Similarly, Fig. 5.9(c) depicts the final term.

* Finally, Fig. 5.9(d) depicts the entire expression for
X(e’®)

- Because of the periodicity of the a, X(e/®) can be
interpreted as a train of impulses occurring at
multiples of the fundamental frequency w =2mk/N ,
with the area of the impulse located at being 2ra,.

X(e/?) = z Znach(w—%) (5.20)

k=—o

5.2 The Fourier Transform for Periodic Signals

| Uavh r-\wo'\
coswan = ( eV e )

—

« Example 5.5

P | bt P 1

T 2w T wg 0 (07 T 27 ¢
(—2m—wg) (—27+wg) (21 —wp) (2:.5 wq)

Figure 5.10 Discrete-time Fourier transform of x[n] = cos wyn.
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« Example 5.6 Y () 25 ami

1

Iooooooooolooo e e
N 2N n

0
(a)

X(e'")

27n/N
27
- -
N
(b)
Figure 5.11 (a) Discrete-time periodic impulse train; (b) its Fourier

transform.

5.3 Properties of the Discrete-Time

Fourier Transform
X (e") = F{x[n]}
x[n]=F"{X (')}
x[n]«—=— X (e!?)
1. PERIODICITY
As we discussed in Section 5.1, the Discrete-Time
Fourier transform is always periodic in w with

period 2m; i, e., X (ej(w+2ﬂ)) — X (ejw)

This is in contrast to the continuous-time Fourier
Transform, which in general is not periodic.
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5.3 Properties of the Discrete-Time Fourier Transform

2. LINEARITY

o If Xl[n](L) x1(ejw)_

and  X,[n]«——— X, (") |
> ax[n]+bx,[n]«Z—aX,(e')+bX,(e')
3. SHIFTING

o If X[n]«— X (e'”)

then x[n —n,]<——>e '™ X (e')

and g lo"y[n]«2L X (e!(”"))

11

5.3 Properties of the Discrete-Time
Fourier Transform
« Example 5.7

Hip(e')
: J
R s(wW-1] [1
HhF (e \wj :le\(e ) l T l T 1 T T
2w s « g ™ 2w
ﬂl_ - ] &Fn #
ApL3 lg"‘lﬂ Hip(ee )
= J" Cnd
Aip # 1
T T T T
27 T T T 2m
(m—wo) (r—wy)
(b)

Figure 5.12 (a) Frequency response of a lowpass filter: (b) frequency re-
sponse of a highpass filter obtained by shifting the frequency response in (a)
by w = # corresponding to one-half period.
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5.3 Properties of the Discrete-Time Fourier
Transform

Conjugation and Conjugate Symmetry (1/2)
If  x[n]<«Z— X (e'?)

then X [n]«—2— X" (e71?)
If X[N] is real valued, its transform X (e**) is conjugate symmetric.

That is X (ejw) _ X*(e—jaJ)

From this, it follows that Re{X (e**)} is an even function of @
and Im{X(e’")}an odd function of ®.

13

5.3 Properties of the Discrete-Time Fourier Transform
« Conjugation and Conjugate Symmetry (2/2)
sv{X[n]} <L Re{X(e™)}

and

Od{x[n]}«"— jSm{X(e")}

where £V and Od denote the even and odd parts, respectively.

14
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5.3 Properties of the Discrete-Time Fourier Transform

»  Differencing and Accumulation
1. First difference :

x[n]—x[Nn-1]«Z—>@1-e *)X (e')

2. Summation: w0, A vad et

" ml< | =
m;ox[m] . 1_2wa(ej”)+ﬂx(ej°)k§5(w—zm)
)
‘t \
f?Cﬁ’Z)O{I <—7:=L> ?—Y(d;u)+7t/<(u)
Ay

15

5.3 Properties of the Discrete-Time Fourier Transform
EXAMPLE 5.8

Let us derive the Fourier transform X(e/®) of the unit step x[n] = u[n] by making use
of the accumulation property and the knowledge that

5 .
gln] = 6[n] «— G(e’*) = 1.
From Section 1.4.1 we know that the unit step is the running sum of the unit impulse.
That is,
n

x[n] = S glm].

m= x

Taking the Fourier transform of both sides and using accumulation yields

| 1 e
X(el®)y = —G(e/) + mG(e®) > 8(w — 2k)
(1 =e¥) F=T

= — : +7r§:5(w—277k).

— jw
l—e =

16



5.3 Properties of the Discrete-Time Fourier Transform

e Time Reversal

Let x[n] be a signal with spectrum X (e'), and consider
the transformY (e*) of y[n] = X[-n] From eq.(5.9),

o oo 'a,,/ :E . —a"-\lf\
Y(eja)) — z y[n]e—j(on — ZX[_n]e—ja;n x(e > é_:): nIe

Substituting m = —n into eq.(5.40),we obtain
Y(e')= D x[mle 1CM = X (e”!*)

That is, :
X[-n]<«—— X (e7')

17

5.3 Properties of the Discrete-Time Fourier Transform

Tn CT FT, wt have 70n 5(‘4,%& /7/9703‘»’2[
Time Expansion
Recall in continuous-time case , where a is a real number.
x(at) <L>i X (J—a)
la =" a
In constructing similar x[an], note that:

Aoy, ol

. ) . _ Xgn]s X Ce3]
(i) ahas to be an integer; otherwise, X[an] is qrotdefined)in general.

(i) If ais an integer, say 2, then in x[2n] all odd sample will be lost.

Instead, we define a “slow down” version of X[n] .

X, [] = x[E], if nisa multiple of k
0, otherwise

18
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5.3 Properties of the Discrete-Time Fourier Transform

X 21

Figure 5.13 The signal xz[n] ob-

tained from x[n] by inserting two zeros k —
between successive values of the

original signal.

19

5.3 Properties of the Discrete-Time Fourier Transform

« Time Expansion

i +0oo
X(k)(ejw) = z x(k)[n]e_j“m = Z x(k)[rk]e—jwrk
e =
= z x[rle ko) = x(elkw)
r=—00

FT .
Xy [n] © X (/%)

20

10
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5.3 Properties of the Discrete-Time Fourier Transform

4 yoa& ik - % - T
Figure 5.14 Inverse relationship between the time and vrequency domains: As k in- WYQSQ

creases, X [77] spreads out while its transform is compressed

5.3 Properties of the Discrete-Time Fourier Transform

EXAMPLE 5.9 (1/3)
As an illustration of the usefulness of the time-expansion property in determining
Fourier transforms, let us consider the sequence x[n] displayed in Figure 5.15(a). This
sequence can be related to the simpler sequence y[n] depicted in Figure 5.15(b). In
particular

x[n] = yoy[n] + 2y@)ln — 1],
where

sl { y[n/2), if niseven
& 0, if n is odd
and yp)[n — 1] represents y()[n] shifted one unit to the right. The signals y(,[n] and
2y@y[n — 1] are depicted in Figures 5.15(c) and (d), respectively.

Next, note that y[n] = g[n — 2], where g[n] is a rectangular pulse as considered
in Example 5.3 (with N; = 2) and as depicted in Figure 5.6(a). Consequently, from
Example 5.3 and the time-shifting property, we see that

sin(Sw/2)

joy — ,7j2w
Yet)= & sy’ -

11
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5.3 Properties of the Discrete-Time Fourier Transform

EXAMPLE 5.9 (2/2)
[ x[n]

| l 1]

4 7 8 9

y[n]

n

we

()
2ypp)In—1]
2
01 2 3 45 6 7 8 9 n

(d)

Figure 5.15 (a) The signal x[n] in Example 5.9; (b) the signal y[n]; (c)
the signal y(»)(n] obtained by inserting one zero between successive values of 23
y[n); and (d) the signal 2y)[n — 1].

5.3 Properties of the Discrete-Time Fourier Transform
EXAMPLE 5.9 (3/3)

Using the time-expansion property, we then obtain

i SIN(SW)

nlnl «<— - R
yoy[n] sin(@)
and using the linearity and time-shifting properties, we get

J = sin(Sw)
2vin[n — 1 Yolaw — ot
yaln =11« 2e7 -5 0

Combining these two results, we have

X(ejw) _ 67-‘[4(0(1 re Ze_j([,)<8ip(5w)).
sin(w)

24

12
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5.3 Properties of the Discrete-Time
Fourier Transform

 Differentiation in Frequency
Again, let

FT .
x[n] & X(e!?)

If we use the definition of X (e/®) in the analysis Eq. (5.9) and
differentiate both sides, we obtain

. + 00
dX(e’®) Z .
—_—= —jnx[n]e™/“".
dw =

The right-hand side of this equation is the Fourier transform of —jnx[n].
Therefore, multiplying both sides by j, we see that
[ ]FT ,dX(ej“)) 5 16
g . .
nxfn] & —— (5.46)

5.3 Properties of the Discrete-Time Fourier Transform

e Parseval’s Relation
< 2 1 x|
n;;o'X[n]' =Z£UX(eJ )| dew

1. The left-hand side of this equation is the total energy in the
signal x[n].

2. |X (e"“’)|2 is referred to as the energy-time-density spectrum of the
signal X[n].

This equation is the counterpart for aperiodic signal of Parseval’s
relation.

26

13
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5.3 Properties of the Discrete-Time Fourier Transform
EXAMPLE 5.10 (1/3)

Consider the sequence x[n] whose Fourier transform X(e/*) is depicted for —7 =
o = mrin Figure 5.16. We wish to determine whether or not, in the time domain, x[n]
is periodic, real, even, and/or of finite energy.

XV X
X"l
34
2
t t (O]
-Tr _ I s ™
2 (a) 2
Figure 5.16 Magnitude and phase of the Fourier transform for Exam-
ple 5.10.
+00
2 1 ion |2 7
20 =3[, [ do=7
= 22 4 ”

5.3 Properties of the Discrete-Time Fourier Transform
EXAMPLE 5.10 (2/3)

LX(e")
2m +

‘L Slope of 2
—— N

(b)

Figure 5.16 Magnitude and phase of the Fourier transform for Exam-

ple 5.10. 28

14



5.3 Properties of the Discrete-Time Fourier Transform
EXAMPLE 5.10 (3/3)

Accordingly, we note first that periodicity in the time domain implies that the
Fourier transform is zero, except possibly for impulses located at various integer multi-
ples of the fundamental frequency. This is not true for X(e/). We conclude, then, that
x[n] is‘eriodic.

Next, from the symmetry properties for Fourier transforms, we know that a real-
valued sequence must have a Fourier transform ofe and a phase function

Third, if x[n] is an even function, then, by the symmetry properties for real signals,

X(e/*) must be real and even. However, singg X(e/®) = [X(e/?)|e /2, X(e/®) is not a
; : pa. ol
real-valued function. Consequently, x[n] isf ven.

Finally, to test for the finite-energy property, we may use Parseval’s relation,

- 5 1: i "
> mf = 5 J X(e/)Pde.

n=-—o

It is clear from Figure 5.16 that integrating [X(e/“)[> from — to 7 will yield a finite
quantity. We conclude that x[n] has

29

5.4 The Convolution Property

« The Convolution Property
y[n] = x[n] * h(n]

and
Y(e/®) = x(e/*)H(e*)

30

2022/6/2
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5.4 The Convolution Property
EXAMPLE 5.11
Consider an LTI system with impulse response

h[n] = &[n — ng).

The frequency response is

+
H(e™) = Z 8[n — nple /9" = ¢ Juno,
n=-—x
Thus, for any input x[n] with Fourier transform X(e/*), the Fourier transform of the
output is

Y(e/®) = e om0 X (i), (5.49)

‘We note that, for this example, y[n] = x[n — ng] and eq. (5.49) is consistent with the
time-shifting property. Note also that the frequency response H(e/®) = e~/“™ of a pure
time shift has unity magnitude at all frequencies and a phase characteristic —wn that is

linear with frequency.
31

5.4 The Convolution Property
EXAMPLE 5.12 (1/2)

Consider the discrete-time ideal lowpass filter introduced in Section 3.9.2. This sys-
tem has the frequency response H(e’/*) illustrated in Figure 5.17(a). Since the impulse
response and frequency response of an LTI system are a Fourier transform pair, we can
determine the impulse response of the ideal lowpass filter from the frequency response
using the Fourier transform synthesis equation (5.8). In particular, using -7 =w =7
as the interval of integration in that equation, we see from Figure 5.17(a) that

W

1 (7 o ‘
h[n] = _j H(e_Im)ejtundm — L‘[ e"m”d(y
29} 2,

‘ (5.50)

_ sinw.n

mn

which is shown in Figure 5.17(b).
32

2022/6/2
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5.4 The Convolution Property

EXAMPLE 5.12 (2/2)
H(e™)

—27 —r we 0 we ™ 2n o

h[n]

0 n

(b)

Figure 5.17  (a) Frequency response of a discrete-time ideal lowpass filter;
(b) impulse response of the ideal lowpass filter. 33

5.4 The Convolution Property
EXAMPLE 5.13 (1/4)

Consider an LTI system with impulse response
hln] = a"u[n],
with |a| < 1, and suppose that the input to this system is
x[n] = B"uln],

with || < 1. Evaluating the Fourier transforms of 4[n] and x[n], we have

1
HEe*)y= —— (5.51)
1 —ae /v
and
X(e/?) = b - (5.52)
1-— Be—m!' e
so that
; ; 1
Y Jw :H )IJ(UX Jwy : i ) 553
(™) = HEXE™) = T gem iy = Be o) .
34
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5.4 The Convolution Property
EXAMPLE 5.13 (2/4)

As with Example 4.19 , determining the inverse transform of ¥ (e/“) is most easily
done by expanding Y(e/*) by the_method of partial fractions. Specifically, ¥(e/®) is a
ratio of polynomials in powers of ¢ /“, and we would like to express this as a sum of
simpler terms of this type so that we can find the inverse transform of each term by
inspection (together, perhaps, with the use of the frequency differentiation property of
Section 5.3.8). The general ali;b@' re for rational transforms is described in
the appendix. For this exampld, if &« # 3, thg partial fraction expansion of Y(e/*) is of
the form

A B

Jjoy —
= e (5.54)

Equating the right-hand sides of eqs (5.53) and (5.54), we find that

o e S

a-p’ a—-pB’
Therefore, from Example 5.1 and the linearity property, we can obtain the inverse trans-
form of eq. (5.54) by inspection:

y[n] = ﬁa”u[n] - ;%B”u[n]
(5.55)

#Bl "™ \ufn] = B uln]]. -

a—

5.4 The Convolution Property
EXAMPLE 5.13 (3/4)

Fohe partial-fraction expansion in eq. (5.54) is not valid. However, in this
cases

.

: 1 2
Y(e/?) = (—1 — ae'-i‘") "

which can be expressed as

Y(el®) = éefw%(ﬁ‘_). (5.56)

1 —ae v

As in Example 4.19, we can use the frequency differentiation property, eq. (5.46),
together with the Fourier transform pair

n (‘T 1
a"uln] «— ———,
| —ae /e

to conclude that

n g d 1
no u[n]<—>jaa T—ae i)

36
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5.4 The Convolution Property

EXAMPLE 5.13 (4/4)

To account for the factor e/, we use the time-shifting property to obtain

n+l ¥ . jw d 1
(n+l)a u[n+1]<———>_/ef E m s
and finally, accounting for the factor 1/, in eq. (5.56), we obtain
yln] = (n + Da"uln + 1). (5.57)

It is worth noting that, although the right-hand side is multiplied by a step that begins
at n = —1, the sequence (n + 1)a"u[n + 1] is still zero prior to n = 0, since the factor
n+ 1is zero at n = —1. Thus, we can alternatively express y[n] as

yln] = (n + Da"uln]. (5.58)

37

5.4 The Convolution Property
EXAMPLE 5.14 (1/3)

Consider the system shown in Figure 5.18(a) with input x[n] and output y[n]. The LTI
systems with frequency response H,,(¢/*) are ideal lowpass filters with cutoff frequency
/4 and unity gain in the passband.

Let us first consider the top path in Figure 5.18iai. The Fourier transform of the

signal w;[n] can be obtained by noting tha so that w[n] = ¢/™x[n].
Using the frequency-shifting property, we then obtain

Wi(e™) = X(e/@ ™).
The convolution property yields
Wae’®) = Hyp(e)X(e/“™ ™),
Since ws[n] = e/™w,[n], we can again apply the frequency-shifting property to obtain
Wi(e/”) = Wy(e/@™ ™)
= Hy (/@ ™)X (/@ 2),

38
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5.4 The Convolution Property

EXAMPLE 5.14 (2/3)

X[N] m—

)
}

Sa )

4

INF
et

(b)

Figure 5.18 (a) System interconnection for Example 5.14; (b) the overall
frequency response for this system. 39

5.4 The Convolution Property
EXAMPLE 5.14 (3/3)

Since discrete-time Fourier transforms are always periodic with period 27,
Wi(e’®) = Hp(e/ ™)X (/).
Applying the convolution property to the lower path, we get
Wa(e’) = H,p(e’)X(e/®).
From the linearity property of the Fourier transform, we obtain

Y(e')

Wi(e/®) + Wy(el®)
= [H;p(e’“™™) + Hj,p(e’)] X (/).

Consequently, the overall system in Figure 5.18(a) has the frequency response
ﬁ(@'im) = [Hlp((’j(m?‘m) * Hllt(ejm)]

which is shown in Figure 5.18(b).

As we saw in Example 5.7, H;,(e/“~™) is the frequency response of an ideal
r. Thus, the overall system passes both low and high frequencies and stops
frequencies between these two passbands. That s, the filter has what is often referred to
as an ideal bandstop characteristic, where the stopband is the region /4 < |w| < 37/4.

2022/6/2
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5.5 The Multiplication Property

« Lety[n] = x,[n]x,[n]
Then

[o9]

V(e@)= > yileen = > xyfnlx[n] e e

n=-o n=—o

So

Y(ei®) = Z x,[n] {% L X,(e/?)elmdgye~ion

n=-—oo
o

. 1 . .
He®) = 5ot X Y xme @ a0)

n=-—oo

. 1 . .
Y(el®) = o f X,(e7)X,(e/@=9)dg

21

5.5 The Multiplication Property
EXAMPLE 5.15 (1/3)

Consider the problem of finding the Fourier transform X(e/“) of a signal x[n] which is
the product of two other signals; that is,

x[n] = xi[n]xz[n],

where
sin(37n/4)
xi[n] = ——
mn
and
sin(7n/2)
x2[n] = — -

mn

From the multiplication property given in eq. (5.63), we know that X(e/*) is the periodic
convolution of X (e/“) and X,(e/*), where the integral in eq. (5.63) can be taken over
any interval of length 27r. Choosing the interval —7 < 6 < 7, we obtain

X(e/) = X1 (e X, (e’ )de. (5.64)

1
29 )
42
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5.5 The Multiplication Property

EXAMPLE 5.15 (2/3)

Equation (5.64) resemble, except for the fact that the inte-

gration is limited to the interval —7r < § = 7. However, we can convert the equation

into an ordinary convolution by defining

Xl(ejw) _ [X,(e/‘") for —7'r'<w =7
otherwise

Then, replacing X;(e’%) in eq. (5.64) by X, (e’?), and using the fact that X (e/?) is zero
for | 6 |> r, we see that

T

X(e) = % f Xi(e”)X,(e/“"9)dg

= L j  Ri(eM)Xx (e 0)do.
27 )=

Thus, X(e/?) is 1/27 times the@convolution of t%:‘mgular_pmsa Xi(e/?)

and the periodic square wave X,(e/*), both of which are shown in Figure 5.19. The result
of this convolution is the Fourier transform X(e/“) shown in Figure 5.20.

5.5 The Multiplication Property

EXAMPLE 5.15 (3/3)

£, (&)
1
-2x % -2 I 2n w
X, ()
[1
N — A |
—2% —3;'—1" GT" 2m w

Figure 5.19 )'(I(ef"') representing one period of X;(e™), and X;(e*’). The
linear convolution of X;(e/) and X;(e™) corresponds to the periodic convolu-
tion of Xj(e) and X;(e™).

Xe!)
1
2
~ " | ~—
3

T 3 w w

k3 3m
4 2 4

L
-w 3w m m
2 4

Figure 5.20 Result of the periodic convolution in Example 5.15.
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5.6 Tables of Fourier Transform Properties and Basic
Fourier Transform Pairs

* InTable 5.1, we summarize a number of important
properties of the discrete-time Fourier transform and
indicate the section of the text in which each is discussed.

e In Table 5.2, we summarize some of the basic and most

important discrete-time Fourier transform pairs. Many of

these have been derived in examples in the chapter.

L= E RN PROPERTIES OF THE DISCRETE-TIME FOURIER TRANSFORM

45

Section  Property Aperiodic Signal Fourier Transform

x[n] X(c”")} periodic with

vinl Y(e'”)) period 27
532 Linearity ax[n] + by[n] aX (e + bY(e™)
533 Time Shifting x[n — ny) e I X (el
533 Frequency Shifting " x[n) X(e/w w0y
534 Conjugation x'[n] X' (e 1v)
5.3.6 Time Reversal x[—n] X(e /™)

([n/k], if n = multiple of k
537 Time Expansion Xwln] = Anfkl l _” mu ‘lp ¢ “. X(e/*y
0, if n # multiple of k
54 Convolution x[n]# y[n] X(el®)¥ (')
55 Multiplication x[nlyln] ﬁj X&) (e g
535 Differencing in Time v[n] = x[n—1] (1 = e )X (e')
n

535 Accumulation }‘ x[k] I%X((,m)

2 — i

=

+mX(e") > 8w - 2mk)
k o
pjer
538 Differentiation in Frequency — nx[n] jdXd(.; )
P423

(followed by the next page)
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X(e*) = X'(e 1)
RefX ()} = RelX(e )}

534 Conjugate Symmetry for x[n] real Im{X(e’)} = —Im{X(e /*)}
Real Signals IX(e™)| = |X(e )|
IX(e) = —aX(e)
534 Symmetry for Real, Even x[n] real an even X(e™) real and even
Signals
534 Symmetry for Real, Odd x[n] real and odd X(e’*) purely imaginary and
Signals odd
534 Even-odd Decomposition x.[n] = &{x[n]} [x[n] real] Re{X(e™)}
of Real Signals x,[n] = Od{x[n]} [x[n] real] JIm{X(e!)}
539 Parseval’s Relation for Aperiodic Signals
s 2 1 2
x[n]* = —[ [X(e") dew
Z\ F=ss . |
P.423

L.\ =18 %% 3 BASIC DISCRETE-TIME FOURIER TRANSFORM PAIRS

Signal Fourier Transform Fourier Series Coefficients (if periodic)
S agedt@niim o i: mﬁ(w _ 2;[() o
k=N K==
@ wy =
Joo -
lwan o z 8@ — wg - 271) o - I, k=mm=Nm=2N,...
I=—w 0, otherwise
(b) ;’J_ irrational = The signal is aperiodic
@ w =3
- Log=a N, m +2N,..
coswgn m > {B(w — wg — 27rl) + 8(w + wy — 2mD)} @ =12 tm tmL N, tm L 2N,
it 0, otherwise
(b) %2 irrational > The signal is aperiodic
@ @y = 7%
- % k=rr+Nr*=2N, ...
. T <=
sinwgn 7 ’;L(S(m — wp — 2ml) — 8(w + wy — 27D)} @ =k ke N o,
0, otherwise
(b) ‘;Jﬂ irrational = The signal is aperiodic
A I, k=0xN£2N,...
x[n] =1 27 > 8w — 2ml) @ =
[ — 0, otherwise

P.424

(followed by the next page)
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) > sin[QmK/NYN + )] D
nf=N2 | 27 > u,h[m 3:‘) W T NsnmkN] TN
K== ! 2N, + 1
a = T, k=0, %N, %2N,
2w &= 2k 1
:4.51,. kN] _\1' }_..s(m ’\L) ay =  forall k
n !
a"ulnl, la| <1 -
1—ae
o] (1 N sinf(Ny + 1))
] 0 | N sin(w/2)
Wi _ W (W L 0=of=W
™ X(w)
: 0, W<lo| s
O<W<w X(w) periodic with period 277
5(n) 1
] — S b - 2mk)
5[ ]
(n+ Da"ulnl, la| <1 :
' (1 — ae~ vy
arr-D i W< 1
P.424 | TaiGr—mp @M@ a )

5.7 Duality

+ Duality in Discrete-time Fourier series
Consider two periodic sequences with period N, related through the
summation ®, < g Rafet, 1295)

flml=5 > girle W _J
1 . (2T
fll=y > glle ™ @ (s65)

glnle——f[k] (5.66)

* If we let m=nand r=-k, Eq. (5.65) becomes EZ@’-UH')
fl= Y < gl-kle™

k=<N>

fIn]l——~ g[-k] (5.67)

25



5.7 Duality

FS k(2T
x[n —nyle——a,e k(o

(2T Fs
and ejm(N)nx[n]<—>ak_m

FS
> xlrlyln - rle—— Naghy
r=<N>
xfalylil—— ) b

I=<N>

5.7 Duality

EXAMPLE 5.16 (1/2)

Consider the following periodic signal with a period of N = 9:

1 sin(57rn/9)

—————  n# multiple of 9
9 sin(7n/9) ple

x[n] =

9 n = multiple of 9

square wave with period N = 9 such that

,lnl B Iv =
& l 0, 2<|n =4.

1 sin(57k/9)
9 sin(mk/9) '

J
9’

k # multiple of 9

k = multiple of 9

The Fourier series analysis equation (3.95) for g[n] can now be written as

1 < ol
b, = 9 ‘\_J‘(l)(‘ JemnRsi

n

(5.72)

In Chapter 3, we found that a rectangular square wave has Fourier coefficients in a form
much as in eq. (5.72). Duality, then, suggests that the coefficients for x[n] must be in the
form of a rectangular square wave. To see this more precisely, let g[n] be a rectangular

The Fourier series coefficients b for g[n] can be determined from Example 3.12 as

(5.68)
(5.69)

(5.70)

(5.71)

52
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5.7 Duality
EXAMPLE 5.16 (2/2)

Interchanging the names of the variables k and n and noting that x[n] = b,,, we find that
1 < [r—
x[n] = = > (e /777"
9 <
k=-2

Letting &' = —k in the sum on the right side, we obtain

] — I
x[n] = 5 L otk 9

k

Finally, moving the factor 1/9 inside the summation, we see that the right side of this
equation has the form of the synthesis equation (3.94) for x[n]. We thus conclude that
the Fourier coefficients of x|[n] are given by

[ /9, |k =2
a, = |

0, 2 < |k = 4,

and, of course, are periodic with period N = 9.
53

5.7 Duality

Duality between the Discrete-Time Fourier Transform and
the Continuous-Time Fourier Series

[eq. (58)] X[n] :i J.X (ejw)eja)nda)
272- 2

[eq. (5.9)] | 2 ~jon

X (e = _Zx[n]e (5.74)
[eq. (5.38)] M

x(t) = 1% o a,e/kot (5.75)
[eq. (5.39)]

== [ x(t)e*otde (5.76)

T

(5.73)
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5.7 Duality
EXAMPLE 5.17 (1/2)
The duality between the discrete-time Fourier transform synthesis equation and the

continuous-time Fourier series analysis equation may be exploited to determine the
discrete-time Fourier transform of the sequence

sin(n/2)
T

x[n] =

To use duality, we first must identify a continuous-time signal g(¢) with period T = 27
and Fourier coefficients a; = x[k]. From Example 3.5, we know that if g(¢) is a periodic

square wave with period 27 (or, equivalently, with fundamental frequency wg = 1) and
with

1, M =T,
0, T\ <l =wn"

gln) = {

then the Fourier series coefficients of g(r) are

55

5.7 Duality

EXAMPLE 5.17 (2/2)
_SI(KLY)
4 = km

Consequently, if we take T} = /2, we will have a; = x[k]. In this case the analysis
equation for g(7) is
sin(mk/2) 1

! e Kdt = LJM (Ve *dt
mk - ﬁj’—ng( ¢ 2m ) -an ‘

Renaming k as n and  as w, we have

5 /2
M/_Z) . 1 J (l)eij"wdw. (577)

mn 27 ) _an

Replacing n by —n on both sides of eq. (5.77) and noting that the sinc function is even,
we obtain

sin(mn/2) 1
mm 2w

/2 .
f (He!™dw.
—m/2

The right-hand side of this equation has the form of the Fourier transform synthesis
equation for x[n], where

1 |w| =72

3 56
0 M2<|w|=m

X(e/?) = {

2022/6/2
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5.7 Duality

TABLE 5.3

TABLE 5.3 SUMMARY OF FOURIER SERIES AND TRANSFORM EXPRESSIONS

2022/6/2

Time domain

Continuous time

Frequency domain

Discrete time

Time domain

Frequency domain

x(1r)
i A" AIAI‘“W"
Fourier
continuous time
periodic in time

Series

ay

v(t)e Jkoordt

|
Ty 'Ty

discrete frequency
aperiodic in frequency

x(1)
L[ X(jw)e! dw !

Fourier |

Transform | continuous time
1

aperiodic in time

X(jw) =
[ 27 x(t)e™ " dt

continuous frequency
aperiodic in frequency

T
x[n] = 1
S ooy axei N J
'
discrete time
periodic in time

ay =

:; .\_;l' (N ‘I”ll, JkzwNm
discrete frequency
periodic in frequency

aperiodic in time

1
x[n] = :
\I, fyr X(e4<)e <" du l

2 |

discrete time :

I

X(ei®) =

Sa7 o alnleion
continuous frequency
periodic in frequency

5.8 Systems Characterized By Linear Constant-
Coefficient Difference Equations

CY(®)  TM b

CX(eJ?) T XN qe ke

57
(5.78)
(5.79)
(5.80)
58
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EXAMPLE 5.18

Consider the causal LTI system that is characterized by the difference equation

y[n] —ay[n — 1] = x[n], (5.81)
. o
+ime Sw-t

with |a| < 1. From eq. (5.80)

Fr

Comparing this with /Example 5.1, we recognize it as the Fourier transform of the se-
paring P g
quence a"u[n]. Thus| the impulse response of the system is

h[n] = a"uln]. (5.83)
1@y 08" 1) 2y 0e”)
()0 68" We™) nt-

e frequency response of this system is

1

H(el) = P

(5.82)

59
Consider a causal LTI system that is characterized by the difference equation
3 1
Mn) = gyl =11+ gyln = 2] = 2x[n). (5.84)
From eq. (5.80), the frequency response is
; 2
H(e') = (5.85)

I | P T
2 Jw = J
1 7€ + g€

As a first step in obtaining the impulse response, we factor the denominator of eq. (5.85):

2
(1 — je~do)(1 — Le-jwy’

H(e?) = (5.86)

H(e’*) can be expanded by the method of partial fractions, as in Example A.3 in the
appendix. The result of this expansion is
4 2

H(e) = = : 5.87
(e) =l 1L (5.87)

The inverse transform of each term can be recognized by inspection, with the result that

1

A\ i n
i) = 4(5) ] — 2(1) uln. (5.38) 5
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EXAMPLE 5.20 (1/2)

Consider the LTI system of Example 5.19, and let the input to this system be
x[n] = 1 ) uln]
a ;

Then, using eq. (5.80) and Example 5.1 or 5.18, we obtain

. A . ) 1
Y(e’”) = H(e’*)X(e’) [ — — H —= ]
(1= ge7ioxl = gem) [ 1= geo (5.89)
2

(1 - Je o)1 — teiw)?

As described in the appendix, the form of the partial-fraction expansion in this case is

By " By B

Y(e/?) = _ — + =,
1-3ejo  (1-gejep  1—1ieje

(5.90)

61

EXAMPLE 5.20(2/2)

where the constants By, B),, and B, can be determined using the techniques described
in the appendix. This particular expansion is worked out in detail in Example A.4, and
the values obtained are

By = -4, Bp= -2 By =38,
so that
: 4 2
V() =~ — e+ — . (5.91)
1 T Ze J/ (1 = Zé’ ) 1- Ee

The first and third terms are of the same type as those encountered in Example 5.19,
while the second term is of the same form as one seen in Example 5.13. Either from
these examples or from Table 5.2, we can invert each of the terms in eq. (5.91) to obtain
the inverse transform

y[n] = [—4(?})" - 2(n+ 1)(5—1‘) + 8(%) ] u[n]. (5.92)
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Homework (F7hR)
5.3,54,56,5.8,5.10,5.13, 5.14, 5.20, 5.21, 5.32, 5.35

5322 B
Homework (E5hR)
53,5.4,56,58,5.9,65.12,5.13,5.18, 5.19, 5.29

e 5.32. The Fourier transform of a discrete-time
signal x[n] is

X(e/®) = e/2® (1 — e™/3%).

Completely specify x[n].

32



