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Signal and Systems

Chapter 7

Sampling

« Under some conditions, a continuous-time signal
can be completely represented by and recoverable
from knowledge of its values, at points equally
spaced (not always) in time.

 Exploit sampling to convert a continuous-time
signal to a discrete-time signal, process the
discrete-time signal using a discrete-time system,
and then convert back to continuous time.
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 Processing discrete-time signals is more
flexible and is often preferable to processing
continuous-time signals.

 This is due to in large part to the dramatic
development of digital technology over the
past few decades

 Resulting in the availability of inexpensive,
lightweight, programmable, and easily
reproducible discrete-time systems.

7.1 Representation of a continuous-time
signal by its samples: The sample theorem

* Figure 7.1, three different continuous-time signals have
identical values at integer multiples of T.



x1(kT) = x2(kT) = x3(kT)
But x4 (t) # x5 (t) # x3(t)

Figure 7.1  Three continuous-time signals with identical values at integer
multiples of 7.

7.1.1 Impulse-Train Sampling

 T: sampling period

« ws=2n/T :fundamental frequency
p(t): sampling function

X,()=x(t)p(t), where

p(t) = Z 5(t —nT)

n=-—oo
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7.1.1 Impulse-Train Sampling

x(t) -»é)—‘ %p(®) X,()=x(1)p(t)

1| pl)
1 (e}
T T 1 I bo- > 8(c—nr)
0 t N=—oco
x(0)
. —T— x(M)
AN T N xt
ps = g,
4 I
0 t  Figure 7.2 Impulse-train sampling.

xp () = x()p(B)

_ Z x(O)8(t — nT) = 2 x(nT)8(t — nT)

1 (0.0)
Xp(jw) = E_[ X(Jo)P(j(w — 6))do
From Example_4.8, p. 299, P(jw)
21
== Z 5(w — kay)

k=—o0
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Figure 7.3  Continued (c) spectrum
of sampled signal with w. 2wy

) e

‘ (d) spectrum of sampled signal witf

S Sl LY

Impulse-Train Sampling

e Figure 7.3(c):

wy < (s — wy)
wg > 2wy

e There is no overlap between the shifted replicas
of X(jw)
e Figure 7.3(d): there is overlap between the shifted

replicas
P wy > (ws — wy)

ws < 2wy
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T
)

If .>2a)y, X(t) can be
recovered exactly from x(t)
/\ by means of a lowpass filter
B with gain T and a cutoff
frequency greater than a,

/\‘/\1] AN and less than o,-ay,.

Sampling theorem:

* Let x(t) be a band-limited signal with X(jw) = 0
for |w| > wy,. Then x(t) is uniquely determined by
its samples x(nT), n = 0,+1,+2, ..., if

ws > 20y,
27
where Ws = —.

» Given these samples, we can reconstruct x(t) by
generating a periodic impulse train in which
successive impulses have amplitudes that are
successive sample values.
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 This impulse train is then processed through an
ideal lowpass filter with gain T and cutoff
frequency greater than wy; and less than
w, — wy. The resulting output signal will
exactly equal x(t).

 The frequency 2a,,, which under the sampling
theorem, must be exceeded by the sampling
frequency w,, is commonly referred to as the
Nyquist rate.

7.1.2 Sampling with a Zero-Order Hold

* In practice, narrow, large-amplitude pulses
are relatively difficult to generate and
transmit.

« It is often more convenient to generate the
sampled signal in a form of referred to as a
zero-order hold.

 Such a system samples x(t) at a given
instant and holds that value until the next
instant at which a sample is taken (Fig. 7.5)



/\/\ x(t) | Zero-order | Xo(t)
- hold -

Figure 7.5 Sampling utilizing a zero-order hold.

e The output x,(t) of the zero-order hold can be
generated by impulse-train sampling followed by
an LTI system with a rectangular impulse response

(Fig. 7.6)

2022/6/15

P

Xt )\ ol 1 Xo (t)

0] %) I
Sampling with /\/\
a Zero-Order
Hold |

’7 > 'de o (t)
. ‘ = L Figure 7.6  Zero-order hold as
impulse-train sampling followed by an

t response

LTI system with a rectangular impulse
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e To reconstruct x(t) from x,(t), we consider
processing Xq(t) with an LTI system with
impulse response h,(t) and frequency
response H,(jw). (Fig. 7.7)

e \We wish to specify H,(jw) so that r(t)= x(t)

2 sin (2L
Hojo) = e/ [—Sm(f 2 )], 7.7

. 2 H(j
H(jo) = S, (7.8)
Hy(jw)H,(jw) = H(jw)

MW |
pt) | ,

I
= ho (1) e 1 :

Xp (t)! 1 Xg (1) | ')

K= | A |
% 0 Tt ;

I
I |

Figure 7.7 Cascade of the representation of a zero-order hold (Figure 7.6)
with a reconstruction filter.
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If the cutoff frequency of H(jw) is o, /2, the ideal
magnitude and phase for the reconstruction filter
following a zero-order hold is shown below:

<L H, (jw)

Figure 7.8 Magnitude and phase
for the reconstruction filter for a zero-
order hold.

Sampling with a Zero-Order Hold

In practice the frequency response in Eg. (7.8) cannot be
exactly realized, and thus an adequate approximation to it
must be designed.

In fact, in many situations, the output of the zero-order
hold is considered an adequate approximation to the
original signal by itself, without any additional lowpass
filtering, and present a possible, although admittedly very
coarse, interpolation between the sample values.

10
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7.2 Reconstruction of a signal from its
samples using interpolation

e Interpolation: the fitting of a continuous
signal of a set of sample values

— Zero-order hold
— Linear interpolation (Fig. 7.9)

Figure 7.9 Linear interpolation be- |
tween sample points. The dashed curve
represents the original signal and the ]

t solid curve the linear interpolation. ?

Back to Fig. 7.4,
1, () = 2, (£) * h(t) = z  x(nT)h(t — nT)

For ideal lowpass filter H(jw) in Fig. 7.4

w.Tsin(w,t
ey = LeTsin(@ct)
Tw,t

w.T sin(w.(t —nT))
s w.(t —nT)

%, () = zm_ x(nT)
= 7 (1)

11
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Reconstruction of a signal from its
samples using interpolation

%0 Figure 7.10 Ideal band-limited in-
terpolation using the sinc function:
(a) band-limited signal x(t); (b) im-
pulse train of samples of x(t); (c) ideal
t  band-limited interpolation in which the
impulse train is replaced by a superpo-
© sition of sinc functions [eq. (7.11)].

Reconstruction of a signal from its
samples using interpolation

H. (jo)!
T
~€— |deal interpolating
filter
Zero-order —>=,
hold
Figure 7.11 Transfer function for
% Og 0 g e b the zero-order hold and for the ideal
Vg - -t s i 3 "
2 interpolating filter.

e The zero-order hold is a very rough approximation,
although in some cases it is sufficient.

e Higher order holds: a variety of smoother interpolation
strategies.

12



Reconstruction of a signal
from its samples using
interpolation under
different sampling
frequencies

Reconstruction of a signal from its samples using
interpolation

e Linear interpolation: sometimes referred to as a first-order hold with
h(t) triangular, the associated transfer function is

p(t)
(a)
Xp(t)
,IItIW’lTI
T 2T !
(b)
. :/ﬁm&)ﬂ:‘%“&)
/\
T : T ¢

(c)

1 sm(“’TT)
H(jw) = T[ 7] ]2
2
H Lo & ST )
w2

Figure 7.13 Linear interpolation
(first-order hold) as impulse-train sam-
pling followed by convolution with a
triangular impulse response: (a) sys-
tem for sampling and reconstruction;
(b) impulse train of samples; (c) im-
pulse response representing a first-
order hold;

2022/6/15
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(d)
H(jw)
o
Ideal interpolating
filter
First-ord ) )
IrSho(l)é . Figure 7.13  Continued (d) first-
) | order hold applied to the sampled sig-
—wy o 0 W w0, © nal; (e) comparison of transfer function
2 2 of ideal interpolating filter and first-
(e) order hold.

Figure 7.14  Result of applying a first-order hold rather than a zero-order hold af-
ter impulse sampling with one-third the horizontal and vertical spacing used in Fig-
ures 7.12(a) and (b).

14
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7.3 The effect of undersampling:
Aliasing

When w, < 2wy, the spectrum of x(t), is no longer replicated in
X,(jw) and thus is no longer recoverable by lowpass filtering.
This effect, in which the individual terms in Eqg. (7.6) overlap, is
referred to as aliasing (& 2).

1 (0]
X =7 ). X(G@=—ko)) (7.6)

k=—o0

The effect of undersampling: Aliasing

x,(nT) =x(nT), n=0,+1,42,...... (7.13)

x(t) = coswy & Gim=wd, (7.14)

1)
@ wo=—75 %) =coswot=x(t) v = L. >z
J
2wy
b) wy=—; x,(t) = coswg t = x(t
) o 42 r(6) 0= Lyl > 2
(€) wp=—; xr(t)zcos(ws—/wo)t
# x(t) =< 2.1,
Swg
(@) wo=—; xy(t) = cos(ws — wo)t
6 — < W
# x(t) B °

15



X{jw)

The effect of A
undersampling:
Aliasing

Figure 7.15 Effect in the frequency
domain of oversampling and under-
sampling: (a) spectrum of original si-
nusoidal signal; (b), (c} spectrum of
sampled signal with w, > 2ay; (d),

(e) spectrum of sampled signal with

ws < 2w, AS We increase ay in mov-
ing from (b) through (d), the impulses
drawn with solid lines move to the
right, while the impulses drawn with
dashed lines move to the left. In (d)
and (e), these impulses have moved
sufficiently that there is a change in the
ones falling within the passband of the
ideal lowpass filter

Aliasing

AN K( — Wy \JML/ 0 \ffw Wy u)s )

ooy 2 )

(d)

Xpl(jw)

Allasnngm

! L&E
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» The sampling theorem explicitly requires that the sampling
frequency be greater than twice the highest frequency in the
signal, rather than less than or equal to twice the highest
frequency.

« Sampling a sinusoidal signal at exactly twice the highest
frequency is not sufficient.

Example 7.1

Consider the signal x(t) = cos(“5*t + ¢), and suppose
that this signal is sampled, using impulse sampling,
at exactly twice the frequency of the sinusoidal, w;.
If this impulse-sampled signal is applied

as the input to an ideal lowpass filter with

cutoff frequency wy/2, the resulting output is

According to Prob. 7.39(&hR) 7.49(FThR),

wS
X () = COS@COS(7 t)

18
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Discussions:

(1) Perfect reconstruction of x(t) occurs only in the case in
which @ = 0 or an integer multiple of 2.

(2) Otherwise, the signal x,.(t) does not equal x(t).
(3) An extreme case, when @ = —m/2, x,(t) = sin(% t).

The values of the signal at integer multiples of the sample
period 21t/ w, are zero.

AN

Figure 7.17  Sinusoidal signal for Example 7.1.

The effect of undersampling, whereby higher frequencies
are reflected into lower frequencies, is the principle on
which the stroboscopic effect (58 PIZLFE) is based.

Rotating disc

Figure 7.18 Strobe effect

19
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7.4 Discrete-Time Processing of Continuous-Time
Signals

Through the process of periodic sampling with
the sampling frequency consistent with the
conditions of the sampling theorem, the
continuous-time signal =® is exactly
represented by a sequence of instantaneous
values x@m

xq[n] = x.(nT)
(7.16)

Key concepts
1. sampling can be viewed as a C/D converter and reconstruction from
sampling can be viewed as a D/C converter;

2. If adiscrete - time system is equivalent to a continuous-time system,
then their frequency responses Hy(e i) and H,( jo) has the relations
asineq. (7.25) and eq (7.25a);

3. the trick to apply the input of a sinc function to convert a band-
limited continuous operation (i.e., H,(jo) =0 for | ® | > ®,, ©, <
4/2) into an equivalent discrete operation (see Examples 7.2 and
7.3)

20
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7.4 Discrete-Time Processing of Continuous-Time

Signals

PO (| p—— Ccl)nversioln to
discrete time

Discrete-time
system

Conversion to
continous time

Figure 7.19 Discrete-time processing of continuous-time signals.

Figure 7.19 will be referred to as continuous-to-discrete-
time conversion and will be abbreviated C/D. The reverse
operation (D/C) corresponding to the third system in Figure

yaln] = y.(nT)

g [n] = x¢ (nT)

Discrete -Time

7.19
C/D
lll conversion
!
.

System

Yalnl =

Yo (nT)

Y

D/C Ve (1)
conversion
K

Figure 7.20 Notation for continuous-to-discrete-time conversion and
discrete-to-continuous-time conversion. T represents the sampling period.

21
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. continuous-time frequency variable
Q: discrete-time frequency variable

The continuous-time Fourier transforms of x_(t)
and y.(t) are X.(jw) and Y, (jw), respectively,
while the discrete-time Fourier transform of
x,[n] and y,[n] are X ,(e’$?) and Y ,(e/$2),
respectively.

C/D conversion

Conversion of

Xp ) | impulse train

to discrete-time
sequence |

=3 X4[N] = Xc(NT)

22
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X, () Xp ()
T=T, l T=2T,
0T?2 t 0 T 2T t
(b)
) ) ~xq) -
-4-3-2-10 1 2 34 n -4-3-2-10 1 2 3 4 n

(c)

Figure 7.21 Sampling with a periodic impulse train followed by conversion to a
discrete-time sequence: (a) overall system; (b) x,(f) for two sampling rates. The
dashed envelope represents x.({); (c) the output sequence for the two different

sampling rates.

Conversion of
impulse train
to discrete-time|
sequence

> x[n] = X, (nT)

o () Xp (1)

(c)

Figure 7.21  Sampling with a periodic impulse train followed by conversion
to a discrete-time sequence: (a) overall system; (b) x,(f) for two sampling
rates. The dashed envelope represents x.(t); (c) the output sequence for the
two different sampling rates.

23
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[oe]

x,(t) = Z x,(nT)8(t — nT)

n=—oo

And since the transform of §(t — nT) is e /™ it follows that

X,(j0) = $5- oo %, (nT) e~&nT

n=-oo
= Z x,(nT)e =1
n=-o L
X, (ejQ) and X,(jw) are related through w W= _‘IT

Xa(e/2) = X,(JQLT)

1 —@'T J:IT/T
Xp(](‘)) = ;ZI?:—DOXC(].(CU - )) (76)
Xy(e/) = 1 0w X.((Q = 21K)/T)  (7.23)

Xe (jo) Xe (jo)
|
) w
X, (jo) X, (jo)
’ T=T 1 T=T, = 2T,
AN/ NAN y
| | 1 |
2 0 27 27 o ©
Tl TI TZ TQ
X4 (el‘-l) Xq (eJK )
1 i
1 1 1 |
2% 27 Q —-2m 2% Q

Figure 7.22  Relationship between X,(jw), X,(jo), and Xy(¢/**) for two dif-
ferent sampling rates.

X, (ejQ) is a frequency-scaled version of X,(jw) and, in
particular, is periodic in Q with period 2.

24
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* Recovery of the continuous-time signal y.(t)
from this impulse train is then accomplished
by means of lowpass filtering.

D/C conversion

|
| |
| I
i | Conversion of v () T |
! discrete-time | 'P |

4o > dsrsto-tm LT e

: impulse train _ Y Ws |
[ 2 2 :
l |

Figure 7.23 Conversion of
a discrete-time sequence to a
continuous-time signal.

Ye(jw) = Xc(jw)Ha(e’T) (7.24)

The overall system of Fig. 7.24 is equivalent to a C-T LTI
system with frequency response H.(j@) which is related to the
D-T frequency response through

. Hg(eloT), |wl<ws/2
H.(jw) = { Og, Imliws/z (7.25)

25



In summary, the frequency response Hy(e i) in Figure 7.24 can be
derived from:

H (e’

=H(QIT) for|Q| <,

H e’ = He/ "),

Figure 7.24 Overall system for filtering a continuous-time signal using a discrete-

time filter.

Yoty =%,

Lo—...fm5
£ Itering

He (jw), X, (jw)

U]

Figure 7.25 Frequency-domain illustration of the system of Figure 7.24: (a) continuous
time spectrum X.(jw); (b) spectrum anev impulse-train sampling; (c) spectrum of
dwscvelu time sequence x4[n]; (d) Hs(e?) and X,(e’"") that are multiplied to form

Ys(€'"'): () spectra that are multiplied to form Y,(jw); (f) spectra that are multiplied

to form Y.(jw)

(7.25a)

He (jw)

_____________________________________________________________ |

I

I

I

|

Xp (1) Conversion of| x4 [n] ' Yq [n] |Conversion of| y, () I_|I_I |
impulse train Hq (€% sequence to > Yo (1)

to sequence impulse train _9s Ws@ |

2 2 !

|

|

|

|

2022/6/15
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Figure 7.26

Hd (ejﬂ)
\/I . I\. —
| I
-0, 0 0 2r O
He (jw)

Figure 7.26 Discrete-time fre-

A quency response and the equivalent
continuous-time frequency response
for the system of Figure 7.24

7.4.1 Digital Differentiator

Consider the discrete-time implementation of a continuous-time band-limited
differentiating filter. the frequency response of a continuous-time differentiating

filter is
H(jw) = jo, (7.26)

with cutoff frequency w, is
He(jw) = { Jo, Wl <o, (7.27)

the corresponding discrete-time transfer function is

Hie™ = (3} i< (7.28)

P.592

2022/6/15
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7.4.1 Digital differentiator

W,- s
< zZ
) _ jw, lwl<w,
Gy ={ 4 ol o= (20)
T
‘0 {Q
Hd(e] ) =] ? ) |Q| <7 (728)
[ He (jo) |
He (jw)

| . Ve “  Figure 7.27  Frequency response

-
2 of a continuous-time ideal band-limited
differentiator H,(jw) = jo, |o| < w.

Supplement

The inverse discrete-time Fourier transform of H, (e 19) is

1 ! ] in J i i{dn
hy[n] = gﬁw Hd(ejn)ejn dQ) =m£ﬂ Qe Mdq)
S L — J " engg - C —
2aTn o 2mln ) nl

when n # 0 and hy[0] = 0. This is the discrete-time filter whose
effect is equivalent to that of the continuous-time bandlimited
differentiator.

P.593
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Figure 7.28

—2m T @ 2m O

Figure 7.28 Frequency response
Q  of discrete-time filter used to imple-
U — ment a continuous-time band-limited
2 differentiator.

[Example 7.2]

By considering the output of the digital differentiator for a
continuous-time sinc input, we may conveniently determine the
impulse response hy[n] of the discrete-time filter in the
implementation of the digital differentiator. With reference to
Figure 7.24, let

sin(#/T)

Tt

X (1) = (7.29)

where T is the sampling period. Then

I, |o|l<#w/T
0, otherwise

X (jw) = {

P.593

2022/6/15
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which is sufficiently band limited to ensure that sampling x.(t) at
frequency o, = 27/T does not give rise to any aliasing. It follows
that the output of the digital differentiator is

cos(wt/T)  sin(wt/T)

d |
.)((I) - ax('(l) - Tf Tr!z

(7.30)

For x.(t) as given by eq. (7.29), the corresponding signal x4[n] in

Figure 7.24 may be expressed as >« <%=t _ | siv (mn)
T T TT YL
1 (7.31)
Xalnl = x(nT) = £8[n]. = 3\04 o

- 5|1
That is, for n # 0, x,(nT ) = 0, while - T2 W=o

1
o xal0] = x:(0) =

» which can be verified by I’Hépital’s rule. We can similarly evaluate y4[n]
in Figure 7.24 corresponding to y(t) in eq. (7.30). Specifically,

1y co= (ATT)
yalnl = yo(nT) = [ a2 " =0 (7.32)
0 n=2~0

which can be verified for n # 0 by direct substitution into eq. (7.30) and
for n = 0 by application of I’Hopital’s rule.

» Thus when the input to the discrete-time filter given by eq. (7.28) is the
scaled unit impulse in eq. (7.31), the resulting output is given by eq. (7.32).
We then conclude that the impulse response of this filter is given by

(—1y"
haln) ={ 7 70
0, n=20

=>» ©Teacher Note
Note that the impulse response hy [n] derived here is equivalent to that in eq. (7.28a).

P.594

2022/6/15
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Supplement

* In Example 7.2, we apply a trick to find the discrete-time filter
that has the effect equivalent to that of a continuous-time filter
in the bandlimited case.

* Thatis:

(1) First, find the output y.(t) of the continuous-time system if the
input x,(t) is the sinc function as in equation (7.29).

(2) Then, the impulse response of the equivalent discrete-time
system is hy [n] = T y,(nT).

7.4.2 Half-Sample Delay

we require that the input and output of the overall system be related by
Ye(t) = x.(t — A) (7.33)

the equivalent continuous-time system to be implemented must be band limited.

Therefore, we take
e /8, ol < .,

H.(j = .
() {0, otherwise

(7.34)

With the sampling frequency o, taken as o, = 2., the corresponding discrete-time
frequency response is

Hy(e!y = e 70T 0] <, (7.35)

P.594-595

2022/6/15
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| He(jo) | |Hae®)|
1 1
~ g 0g o) —'rlr 1|r Q
L He(jo) L Hy(e'?

A

h I \C ¢ _mA 0

(@) (b)

Figure 7.29 (a) Magnitude and phase of the frequency response for a
continuous-time delay; (b) magnitude and phase of the frequency response
for the corresponding discrete-time delay.

P.595

Supplement
The inverse discrete-time Fourier transform of Hy(e 1) is

L (" 0 (" ,
hd[n] =§f_ Hd(eJISI)ejﬂndQ:EJ ejﬂ(.'?*ﬂf.’)dﬂ

- (7.35a)
_ sin(m(n — A/T))

w(n—A/T)

This is the discrete-time filter whose effect is equivalent to that of the continuous-
time bandlimited delay operation.

For A/T an integer, the sequence y4[n] is a delayed replica of x4[n]; that is,

A
yalnl = x4 {f’l - T} (7.36)

P.595-596
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[Example 7.3]

The approach in Example 7.2 is also applicable to determine the impulse response
hy[n] of the discrete-time filter in the half-sample delay system. With reference to
Figure 7.24, let

sin(/T)
at

XD = (7.37)

sl i ! SThn (w7t )
It follows from Example 7.2 that LT f N i
xln) = xnT) = 2oln

tot- o

Also, since there is no aliasing for the band-limited input in eq. (7.3#, the output of
the half-sample delay system 1

sin(w(t — T/2)/T)
w(t —T/2)

Y('(t) = X¢

P.596-597

sin(7r(f )~ T/2)/T)
w({()— 172)
and the sequence yy[n] in Figure 7.24 is fi}f\/7_

. ( T)/ sin(r(n — 3))
n| = veln = .
Yd y U;_—T (n— %)

ye(t) = x(t = T72) =

b

We conclude that

P.597
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= L) interpolation of the sequence x4[n].
c =4Ac o

T-

T 2T t

of T t y.(t) is equal to samples of a shifted
@ version of the band-limited

/]“w\ Yanl = Yo (nT) =X [(n—)T]

Figure 7.30 (a) Sequence of sam-
ples of a continuous-time signal

x(1); (b) sequence in (a) with a half-
sample delay.

Sec. 7.5 SAMPLING OF DISCRETE-TIME SIGNALS

Key concepts

(i) impulse-train sampling (equation 7.38) and its effect in the frequency domain
[equation (7.42)];

(if) how to reconstruct x[n] after applying impulse-train sampling [see Fig. 7.33,

equation (7.46), and equation (7.46a)];

(iii) Decimation (381EY) [equations (7.48) and (7.49)] and its effect in the

frequency domain [equations (7.54) and (7.55)]; the process of decimation is

called downsampling;

(iv) interpolation [equations (7.56)—(7.58)] and its effect in the frequency domain
[equations (7.59)- (7.62) and Figure 7.37]; interpolation is also called

upsampling

34
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7.5 Sampling of Discrete-Time Signals

« 7.5.1 Impulse-train sampling
» 7.5.2 Discrete-time decimation and interpolation

7.5 SAMPLING OF DISCRETE-TIME SIGNALS
7.5.1 Impulse-Train Sampling (1/3)

* The new sequence x,[n] resulting from the sampling

process is equal to the original sequence x[n] at integer
multiples of the sampling period N and is zero at the
intermediate samples; that is,

x,[n] = {x[n], if n = an integer multiple of N (738)

0, otherwise
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7.5.1 Impulse-Train Sampling (2/3)

» The effect in the frequency domain of discrete-time
sampling is seen by using the multiplication property
developed in Section 5.5. Thus, with

+ oo

xp[n] = x[n]p[n] = EIXMNWM—kN] (7.39)

k=—o00

Figure 7.31 Discrete-time sampling

. 1 . .
X, (/™) =5 f P(e/9)X(e/@=9)do
21

] e (X = ;0 I”U“” IHHHH
I R O O I

, n

oln] = S5 [n — kN
AR

k
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7.5.1 Impulse-Train Sampling (3/3)

» AS in Example 5.6, the Fourier transform of the
sampling sequence p[n]is

where w,, the sampling frequency, equals 2t /N.
» Combining Egs. (7.40) and (7.41), we have

N-1
: 1 .
X,(e/®) = N Z X (e (@=kas)y
k=0

Sampling of a discrete-time signal: the new sequence x, [nl]
resulting from the sampling process is equal to the origina
sequence x[n] at integer multiples of the sampling period N
and is zero at the intermediate samples;

x[n], if n = an integer multiples of N
0, otherwise

[ee)

x,[n] = x[n]p[n] = Z x[kN]&[n — kN]

k=—o0

, 1 . .
X, () = 5 L P(e/®) X(e/@9)de

T

p(ef®) = %’T > 8- ko)

k=—o0

N-1
. 1 .
X,(e/?) = N E X(e/(@key)
k=0
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(b)

% g > 2 W
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X, (e)

MMWM
N

W, 27w
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Figure 7.32 Effect in the frequency domain of impulse-train sampling of a
discrete-time signal: (a) spectrum of original signal; (b) spectrum of sampling
sequence; (c) spectrum of sampled signal with w; > 2wy; (d) spectrum of
sampled signal with w; < 2wpy. Note that aliasing occurs.

p[n] .
e )
i - ()| o) > x0n]

(@)

Hjeri— X EE’_;M)

-2m —y Wy 27 ®

s Kop (20T

—2m — W

Ws— W
P.600
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Hiw) H(ENw)

-2 g 2T ©
2

7N 1% e

—2m — Wy W 2w

(b)

Figure 7.33 Exact recovery of a discrete-time signal from its samples using an
ideal lowpass filter: (a) block diagram for sampling and reconstruction of a band-
limited signal from its samples; (b) spectrum of the signal x[n]; (c) spectrum of x,[n];
(d) frequency response of an ideal lowpass filter with cutoff frequency w/2; (e)
spectrum of the reconstructed signal x,[n]. For the example depicted here wg > 2wy,

0600 so that no aliasing occurs and consequently x[n] = x[n].

[Example 7.4]

Consider a sequence x[n] whose Fourier transform X(ei®) has the property that
<< Le}'[u_)
5 Xy =0  for 279 = |w| = .
g 4
=74 . — : -
To deférmine the lowest rate at which x[n] may be sampled without the possibility
of aliasing, we must find the largest N such that

- T
29T 2T

Uy < 5= 2(?)—¢> N =972

We conclude that N,,,, = 4, and the corresponding sampling frequency is 2n/4 =
/2.

P.600-601
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With h[n] denoting the impulse response of the lowpass filter, we have

hin] = Nw, sin w(.n'

T WH

then
x,-[n] - xp[n] * h[”])

or equivalently,

= Nw,.sinw.(n — kN)
) = Ny e
X n] = AW: I.x[kN] = kN)

+o

x[nl = > x[kN1h.[n — kN1,

k=—o

where h,[n] is the impulse response of the interpolation filter.

P.601

7.5.2 Discrete-Time Decimation and Interpolation

the sampled sequence is typically replaced by a new sequence x,[n], which is simply

every Nth value of x;[n]; that is,

xpln] = xp[nN].

Also, equivalently,

xpln] = x[nN],

P.602

(7.44)

(7.45)

(7.46)

(7.47)

2022/6/15
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ST

Xp[N]

Al

Figure 7.34: Relationship between x,[n] corresponding to sampling and
Xp[N] corresponding to decimation

In between the sampling instants, x,,[n] is known to be zero. Therefore,
it is inefficient to represent, transmit, or store the sampled sequence.
The sampled sequence x,[n] is typically replaced by a new sequence
xp[n]= x,[nN] = x[nN].

Decimation: the operation of extracting every Nth sample.

X, (oo = Z x,[k]e Ik

1
N
k=
Letn=kN,  Xb(gjo) = Z x,[n]e~Jen/N

ngokN
X i\ — —jwn/N _—_ X jw
p(e?) = xp[nle = P(e N)
n=—o

Since x,[n]=0 when n is not an integer multiple of N.

2022/6/15
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» The spectra for the sampled sequence and the decimated
sequence differ only in a frequency scaling or normalization.

» The effect of decimation is to spread the spectrum of the
original sequence over a larger portion of the frequency band.

Figure 7.35 Frequency-domain illustration of the
relationship between sampling and decimation

X(e")
o A | AN
Wy o ™ 2m w

Xp(e)

—Nawy, Ny 21T ®

Figure 7.35  Frequency-domain illustration of the relationship between
sampling and decimation.
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Figure 7.36 (1/2)

C/D x4[n] Discrete time
Xc(t) conversion > lowpass filter [=——3>y,[n]
H(w)
Xc(jm)
—Wm Wy ®

X4(e

1d( ) i,

=
/l\/\/\
-2 ® - o >

Ha(e™)

Figure 7.36  Continuous-time sig-
nal that was originally sampled at the
Nyquist rate. After discrete-time fil-

L ! tering, the resulting sequence can be
—2m2 w0 2m 2 further downsampled. Here X, (jw)
is the continuous-time Fourier trans-
form of x.(t), Xy(€’”) and Yy(e') are
the discrete-time Fourier transforms

of xy[n] and yy[n] respectively, and
Hq(€) is the frequency response of
L G the discrete-time lowpass filter de-

-2m 0 g 2 @ picted in the block diagram.
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Figure 7.37 (1/2)

Conversion of
decimated sequence
to sampled
sequence

Ideal lowpass
filter > x[n]

H(w)

Xp[n] =———>

N 1
D 1 N /\e /\;/,4\{“7:,)
mIHH IH i\ 7T\ -/

e———
R—

Figure 7 37 Unsampling: (a) overall system; (b) associated sequences and spectra
aaaaaaaaaaa
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Xle’
- 1 ™ 2n 0 2w
3 )

{a)

Example 7.5 e

Figure 7.38 Spectra associated with
(b) spectrum after down:

im 2
a factor of 2; (d) spectrum after upsampling x[n] by 2

by 9

Homework

Homework(#7 k)
/7.3,7.6,7.8,7.10,7.14,7.19
7198 /M8

Homework(E i)
7.3,7.6,7.9,7.11,7.15

e 7.5. (a) Spectrum of x[n]
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Y, filter. Here x[n] = x.(nT), Y[nl = ynT),

Determine the frequency response of the filter whose impulse response is h{2n).
\7.19; Consider the system sh

own in Figure P7.19(a) for filtering a CT signal using a DT
and Ly( jw) is an ideal low-pass filter it

cutoff frequency #/7 ang gain 7.
If X.( jw) and Hi

provide sampling of

Y(jw), and ¥ ( jo).

(e ") are as shown in Figure P7.19(b), and if T is chosen 0
1) at the Nyquist frequency, sketch X,(jw). X(e'™), Yie™),

o lrarq(nm +® .2 b 2 : 3
ob 3k Jlmeiey@ biw yomoupotl Tlows i 2l "y
' ) X SN VTR
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