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Signal and Systems

Chapter 7

Sampling

• Under some conditions, a continuous-time signal 
can be completely represented by and recoverable
from knowledge of its values, at points equally 
spaced (not always) in time.

• Exploit sampling to convert a continuous-time 
signal to a discrete-time signal, process the 
discrete-time signal using a discrete-time system, 
and then convert back to continuous time.
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• Processing discrete-time signals is more 
flexible and is often preferable to processing 
continuous-time signals.

• This is due to in large part to the dramatic 
development of digital technology over the 
past few decades

• Resulting in the availability of inexpensive, 
lightweight, programmable, and easily 
reproducible discrete-time systems.

7.1 Representation of a continuous-time

signal by its samples: The sample theorem

• Figure 7.1, three different continuous-time signals have 

identical values at integer multiples of T.
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𝑥1(𝑘𝑇) = 𝑥2(𝑘𝑇) = 𝑥3(𝑘𝑇)
But 𝑥1(𝑡) ≠ 𝑥2(𝑡) ≠ 𝑥3(𝑡)

7.1.1 Impulse-Train Sampling

• T: sampling period

• : fundamental frequency

• p(t): sampling function

• xp(t)=x(t)p(t), where

𝜔𝑠 = 2𝜋/𝑇

𝑝(𝑡) = ෍

𝑛=−∞

∞

𝛿(𝑡 − 𝑛𝑇)
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7.1.1 Impulse-Train Sampling

xp(t)=x(t)p(t)

𝑝(𝑡) = ෍

𝑛=−∞

∞

𝛿(𝑡 − 𝑛𝑇)

𝑥𝑝(𝑡) = 𝑥(𝑡)𝑝(𝑡)

= ෍

𝑛=−∞

∞

𝑥(𝑡)𝛿(𝑡 − 𝑛𝑇) = ෍

𝑛=−∞

∞

𝑥(𝑛𝑇)𝛿(𝑡 − 𝑛𝑇)

𝑋𝑝(𝑗𝜔) =
1

2𝜋
න
−∞

∞

𝑋(𝑗𝜃)𝑃(𝑗(𝜔 − 𝜃))𝑑𝜃

From Example 4.8, p. 299, 𝑃(𝑗𝜔)

=
2𝜋

𝑇
෍

𝑘=−∞

∞

𝛿(𝜔 −𝑘𝜔𝑠)

𝑋𝑝(𝑗𝜔) =
1

𝑇
෍

𝑘=−∞

∞

𝑋(𝑗(𝜔 − 𝑘𝜔𝑠))
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Impulse-Train Sampling

⚫ Figure 7.3(c): 

⚫ There is no overlap between the shifted replicas 

of X(jw)

⚫ Figure 7.3(d): there is overlap between the shifted 

replicas 
𝜔M > (𝜔𝑆 −𝜔𝑀)
𝜔𝑠 < 2𝜔𝑀

𝜔𝑀 < (𝜔𝑠 −𝜔𝑀)
𝜔𝑠 > 2𝜔𝑀
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If ws>2wM, x(t) can be 

recovered exactly from xp(t) 

by means of a lowpass filter 

with gain T and a cutoff 

frequency greater than wM

and less than ws-wM.

Sampling theorem:

• Let x(t) be a band-limited signal with 𝑋 𝑗𝜔 = 0
for 𝜔 > 𝜔𝑀. Then x(t) is uniquely determined by 

its samples 𝑥(𝑛𝑇), 𝑛 = 0,±1, ±2, … , if 
𝜔𝑠 > 2𝜔𝑀,

where 𝜔𝑠 =
2𝜋

𝑇
.

• Given these samples, we can reconstruct x(t) by 

generating a periodic impulse train in which 

successive impulses have amplitudes that are 

successive sample values. 
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• This impulse train is then processed through an 
ideal lowpass filter with gain T and cutoff 
frequency greater than 𝝎𝑴 and less than 
𝝎𝒔 −𝝎𝑴. The resulting output signal will 
exactly equal x(t).

• The frequency 2wM, which under the sampling 
theorem, must be exceeded by the sampling 
frequency ws, is commonly referred to as the 
Nyquist rate.

7.1.2 Sampling with a Zero-Order Hold

• In practice, narrow, large-amplitude pulses 
are relatively difficult to generate and 
transmit.

• It is often more convenient to generate the 
sampled signal in a form of referred to as a 
zero-order hold.

• Such a system samples x(t) at a given 
instant and holds that value until the next 
instant at which a sample is taken (Fig. 7.5)
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⚫ The output x0(t) of the zero-order hold can be 

generated by impulse-train sampling followed by 

an LTI system with a rectangular impulse response

(Fig. 7.6)

Sampling with 

a Zero-Order 

Hold
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⚫ To reconstruct x(t) from x0(t), we consider 

processing x0(t) with an LTI system with 

impulse response hr(t) and frequency 

response Hr(jw). (Fig. 7.7)

⚫ We wish to specify Hr(jw) so that r(t)= x(t) 

𝐻0 𝑗𝜔 = 𝑒−𝑗𝜔𝑇/2
2 sin

𝜔𝑇
2

𝜔
, (7.7)

𝐻𝑟 𝑗𝜔 =
𝑒
𝑗𝜔𝑇
2 𝐻(𝑗𝜔)

2sin(𝜔𝑇/2)

𝜔

, (7.8)

𝐻0 𝑗𝜔 𝐻𝑟 𝑗𝜔 = 𝐻 𝑗𝜔
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If the cutoff frequency of H(jw) is ws /2, the ideal 

magnitude and phase for the reconstruction filter 

following a zero-order hold is shown below:

Sampling with a Zero-Order Hold

In practice the frequency response in Eq. (7.8) cannot be 

exactly realized, and thus an adequate approximation to it 

must be designed.

In fact, in many situations, the output of the zero-order 

hold is considered an adequate approximation to the 

original signal by itself, without any additional lowpass

filtering, and present a possible, although admittedly very 

coarse, interpolation between the sample values.
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7.2 Reconstruction of a signal from its

samples using interpolation

⚫ Interpolation: the fitting of a continuous 

signal of a set of sample values

– Zero-order hold

– Linear interpolation (Fig. 7.9)

Back to Fig. 7.4,

𝑥𝑟 𝑡 = 𝑥𝑝 𝑡 ∗ ℎ 𝑡 =෍
𝑛=−∞

∞

𝑥 𝑛𝑇 ℎ 𝑡 − 𝑛𝑇

For ideal lowpass filter 𝐻 𝑗𝜔 in Fig. 7.4

ℎ 𝑡 =
𝜔𝑐𝑇𝑠𝑖𝑛(𝜔𝑐𝑡)

𝜋𝜔𝑐𝑡
,

𝑥𝑟 𝑡 =෍
𝑛=−∞

∞

𝑥 𝑛𝑇
𝜔𝑐𝑇

𝜋

𝑠𝑖𝑛(𝜔𝑐(𝑡 − 𝑛𝑇))

𝜔𝑐(𝑡 − 𝑛𝑇)
.
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Reconstruction of a signal from its

samples using interpolation

Reconstruction of a signal from its

samples using interpolation

⚫ The zero-order hold is a very rough approximation, 

although in some cases it is sufficient.

⚫ Higher order holds: a variety of smoother interpolation 

strategies.
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Reconstruction of a signal 

from its samples using 

interpolation under 

different sampling 

frequencies

Reconstruction of a signal from its samples using 

interpolation

⚫ Linear interpolation: sometimes referred to as a first-order hold with 
h(t) triangular, the associated transfer function is

𝐻 𝑗𝜔 =
1

𝑇
[
sin

𝜔𝑇
2

𝜔
2

]2



2022/6/15

14



2022/6/15

15

7.3 The effect of undersampling:    

Aliasing

When 𝜔𝑠 < 2𝜔𝑀, the spectrum of x(t), is no longer replicated in 

𝑋𝑝(𝑗𝜔) and thus is no longer recoverable by lowpass filtering. 

This effect, in which the individual terms in Eq. (7.6) overlap, is 

referred to as aliasing (混疊).

𝑋𝑝 𝑗𝜔 =
1

𝑇
෍

𝑘=−∞

∞

𝑋(𝑗(𝜔 − 𝑘𝜔𝑠)) (7.6)

The effect of undersampling: Aliasing

𝑥𝑟(𝑛𝑇) = 𝑥(𝑛𝑇), 𝑛 = 0,±1,±2, . . . . . . (7.13)

𝑥(𝑡) = cos𝜔0 𝑡 (7.14)

(𝑎) 𝜔0 =
𝜔𝑠
6
; 𝑥𝑟(𝑡) = cos𝜔0 𝑡 = 𝑥(𝑡)

(𝑏) 𝜔0 =
2𝜔𝑠
6

; 𝑥𝑟(𝑡) = cos𝜔0 𝑡 = 𝑥(𝑡)

(𝑐) 𝜔0 =
4𝜔𝑠
6

; 𝑥𝑟(𝑡) = cos(𝜔𝑠 − 𝜔0)𝑡

≠ 𝑥(𝑡)

(𝑑) 𝜔0 =
5𝜔𝑠
6

; 𝑥𝑟(𝑡) = cos(𝜔𝑠 − 𝜔0)𝑡

≠ 𝑥(𝑡)
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The effect of 

undersampling:    

Aliasing



2022/6/15

17

( )
= cos(𝜔0𝑡

+ 𝜑) (7.15)
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• The sampling theorem explicitly requires that the sampling 

frequency be greater than twice the highest frequency in the 

signal, rather than less than or equal to twice the highest 

frequency.

• Sampling a sinusoidal signal at exactly twice the highest 

frequency is not sufficient.

According to Prob. 7.39(舊版) 7.49(新版),

𝑥𝑟 𝑡 = cos∅cos(
𝜔𝑠

2
𝑡)
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Discussions:

(1) Perfect reconstruction of x(t) occurs only in the case in 

which ∅ = 0 or an integer multiple of 2𝜋.

(2) Otherwise, the signal 𝑥𝑟(𝑡) does not equal 𝑥(𝑡).

(3) An extreme case, when ∅ = −𝜋/2, 𝑥𝑟 𝑡 = sin(
𝜔𝑠

2
𝑡).

The values of the signal at integer multiples of the sample 

period 2𝜋/𝜔𝑠 are zero.

The effect of undersampling, whereby higher frequencies 

are reflected into lower frequencies, is the principle on 

which the stroboscopic effect (頻閃效應) is based.
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7.4 Discrete-Time Processing of Continuous-Time 

Signals

Through the process of periodic sampling with 

the sampling frequency consistent with the 

conditions of the sampling theorem, the 

continuous-time signal           is exactly 

represented by a sequence of instantaneous 

values 

𝑥𝑑[𝑛] = 𝑥𝑐(𝑛𝑇)

(7.16)

𝑥𝑐(𝑡)

𝑥𝑐(𝑛Τ)

Key concepts

1. sampling can be viewed as a C/D converter and reconstruction from 

sampling can be viewed as a D/C converter; 

2. If a discrete - time system is equivalent to a continuous-time system, 

then their frequency responses Hd(e jΩ) and Hc( jω) has the relations 

as in eq. (7.25) and eq (7.25a); 

3. the trick to apply the input of a sinc function to convert a band-

limited continuous operation (i.e., Hc( jω) = 0 for | ω | > ωc, ωc ≤ 

ωs/2) into an equivalent discrete operation (see Examples 7.2 and 

7.3)

P.585
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7.4 Discrete-Time Processing of Continuous-Time 
Signals

Figure 7.19 will be referred to as continuous-to-discrete-

time conversion and will be abbreviated C/D. The reverse 

operation (D/C) corresponding to the third system in Figure 

7.19 

𝑦𝑑[𝑛] = 𝑦𝑐(𝑛𝑇)
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w: continuous-time frequency variable

Ω: discrete-time frequency variable

The continuous-time Fourier transforms of 𝑥𝑐(𝑡)
and 𝑦𝑐(𝑡) are 𝑋𝑐(𝑗𝜔) and 𝑌𝑐(𝑗𝜔), respectively, 

while the discrete-time Fourier transform of 

𝑥𝑑[𝑛] and 𝑦𝑑[𝑛] are 𝑋𝑑(𝑒
𝑗Ω) and 𝑌𝑑(𝑒

𝑗Ω), 
respectively. 
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𝑥𝑝 𝑡 = ෍

𝑛=−∞

∞

𝑥𝑐(𝑛𝑇)𝛿(𝑡 − 𝑛𝑇)

And since the transform of 𝛿(𝑡 − 𝑛𝑇) is 𝑒−𝑗𝜔𝑛𝑇, it follows that

𝑋𝑝 𝑗𝜔 = σ𝑛=−∞
∞ 𝑥𝑐(𝑛𝑇) 𝑒

−𝑗𝜔𝑛𝑇

𝑋𝑑 𝑒𝑗Ω = ෍

𝑛=−∞

∞

𝑥𝑑 𝑛 𝑒−𝑗Ωn

= ෍

𝑛=−∞

∞

𝑥𝑐(𝑛𝑇)𝑒
−𝑗Ωn

𝑋𝑑 𝑒𝑗Ω and 𝑋𝑝 𝑗𝜔 are related through

𝑋𝑑 𝑒𝑗Ω = 𝑋𝑝 𝑗Ω/𝑇

𝑋𝑝 𝑗𝜔 =
1

𝑇
σ𝑘=−∞
∞ 𝑋𝑐 𝑗 𝜔 − 𝑘𝜔𝑠 (7.6)

𝑋𝑑 𝑒𝑗Ω =
1

𝑇
σ𝑘=−∞
∞ 𝑋𝑐 𝑗 Ω − 2𝜋𝑘 /𝑇 (7.23)

𝑋𝑑 𝑒𝑗Ω is a frequency-scaled version of 𝑋𝑝 𝑗𝜔 and, in 

particular, is periodic in Ω with period 2𝜋.
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• Recovery of the continuous-time signal 𝑦𝑐(𝑡)
from this impulse train is then accomplished 

by means of lowpass filtering.

The overall system of Fig. 7.24 is equivalent to a C-T LTI 

system with frequency response Hc(jw) which is related to the 

D-T frequency response through

𝑌𝑐(𝑗𝜔) = 𝑋𝑐(𝑗𝜔)𝐻𝑑(𝑒
𝑗𝜔𝑇)

(7.24)

𝐻𝑐(𝑗𝜔) = ቊ 0⥂, 𝜔 >𝜔𝑠/2
𝐻𝑑(𝑒

𝑗𝜔𝑇) , 𝜔 <𝜔𝑠/2

(7.25)
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In summary, the frequency response Hd(e jΩ) in Figure 7.24 can be 

derived from:
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Figure 7.26

7.4.1 Digital Differentiator

Consider the discrete-time implementation of a continuous-time band-limited 

differentiating filter. the frequency response of a continuous-time differentiating 

filter is

with cutoff frequency ωc is

the corresponding discrete-time transfer function is

P.592
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𝐻𝑐(𝑗𝜔) = 𝑗𝜔

𝐻𝑐(𝑗𝜔) = ൜ 0, 𝜔 >𝜔𝑐

𝑗𝜔, 𝜔 <𝜔𝑐

𝐻𝑑(𝑒
𝑗Ω) = 𝑗

Ω

𝑇
, Ω < 𝜋

(7.26)

(7.27)

(7.28)

7.4.1 Digital differentiator

The inverse discrete-time Fourier transform of Hd (e jΩ) is

when n ≠ 0 and hd[0] = 0. This is the discrete-time filter whose 

effect is equivalent to that of the continuous-time bandlimited 

differentiator.

Supplement

P.593
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Figure 7.28

By considering the output of the digital differentiator for a 

continuous-time sinc input, we may conveniently determine the 

impulse response hd[n] of the discrete-time filter in the 

implementation of the digital differentiator. With reference to 

Figure 7.24, let

[Example 7.2]  

where T is the sampling period. Then

P.593
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which is sufficiently band limited to ensure that sampling xc(t) at 

frequency ωs = 2π/T does not give rise to any aliasing. It follows 

that the output of the digital differentiator is

For xc(t) as given by eq. (7.29), the corresponding signal xd[n] in 

Figure 7.24 may be expressed as

That is, for n ≠ 0, xc(nT ) = 0, while

P.594

• which can be verified by l’Hôpital’s rule. We can similarly evaluate yd[n] 

in Figure 7.24 corresponding to yc(t) in eq. (7.30). Specifically,

which can be verified for n ≠ 0 by direct substitution into eq. (7.30) and 

for n = 0 by application of l’Hôpital’s rule.

• Thus when the input to the discrete-time filter given by eq. (7.28) is the 

scaled unit impulse in eq. (7.31), the resulting output is given by eq. (7.32). 

We then conclude that the impulse response of this filter is given by

Note that the impulse response hd [n] derived here is equivalent to that in eq. (7.28a).

P.594
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• In Example 7.2, we apply a trick to find the discrete-time filter 

that has the effect equivalent to that of a continuous-time filter 

in the bandlimited case. 

• That is:

(1) First, find the output yc(t) of the continuous-time system if the 

input xc(t) is the sinc function as in equation (7.29).

(2) Then, the impulse response of the equivalent discrete-time 

system is hd [n] = T yc(nT ).

Supplement

P.594

7.4.2 Half-Sample Delay

we require that the input and output of the overall system be related by

the equivalent continuous-time system to be implemented must be band limited. 

Therefore, we take

With the sampling frequency ωs taken as ωs = 2ωc, the corresponding discrete-time 

frequency response is

P.594-595
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P.595

The inverse discrete-time Fourier transform of Hd(e jΩ) is

This is the discrete-time filter whose effect is equivalent to that of the continuous-

time bandlimited delay operation.

Supplement

P.595-596

For Δ/T an integer, the sequence yd[n] is a delayed replica of xd[n]; that is,
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The approach in Example 7.2 is also applicable to determine the impulse response

hd[n] of the discrete-time filter in the half-sample delay system. With reference to 

Figure 7.24, let

[Example 7.3]  

It follows from Example 7.2 that

Also, since there is no aliasing for the band-limited input in eq. (7.37), the output of

the half-sample delay system is

P.596-597

and the sequence yd[n] in Figure 7.24 is

We conclude that

P.597
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P.596

yc(t) is equal to samples of a shifted 

version of the band-limited

interpolation of the sequence xd[n].

Sec. 7.5 SAMPLING OF DISCRETE-TIME SIGNALS

Key concepts

(i) impulse-train sampling (equation 7.38) and its effect in the frequency domain 

[equation (7.42)]; 

(ii)  how to reconstruct x[n] after applying impulse-train sampling [see Fig. 7.33, 

equation (7.46), and equation (7.46a)]; 

(iii) Decimation (抽取) [equations (7.48) and (7.49)] and its effect in the 

frequency domain [equations (7.54) and (7.55)]; the process of decimation is 

called downsampling; 

(iv) interpolation [equations (7.56)–(7.58)] and its effect in the frequency domain 

[equations (7.59)– (7.62) and Figure 7.37]; interpolation is also called 

upsampling

P.597
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7.5 Sampling of Discrete-Time Signals

• 7.5.1 Impulse-train sampling

• 7.5.2 Discrete-time decimation and interpolation

7.5 SAMPLING OF DISCRETE-TIME SIGNALS

7.5.1 Impulse-Train Sampling (1/3)

• The new sequence 𝑥𝑝[𝑛] resulting from the sampling    

process is equal to the original sequence 𝑥[𝑛] at integer 

multiples of the sampling period N and is zero at the 

intermediate samples; that is,

𝑥𝑝[𝑛] = ቊ
𝑥 𝑛 , if 𝑛 = an integer multiple of 𝑁

0, otherwise
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7.5.1 Impulse-Train Sampling (2/3)

• The effect in the frequency domain of discrete-time 

sampling is seen by using the multiplication property 

developed in Section 5.5. Thus, with

𝑥𝑝[𝑛] = 𝑥[𝑛]𝑝[𝑛] = ෍

𝑘=−∞

+∞

𝑥[𝑘𝑁]𝛿[𝑛 − 𝑘𝑁]

Figure 7.31 Discrete-time sampling

𝑋𝑝(𝑒
𝑗𝜛) =

1

2𝜋
න

2𝜋

P(𝑒𝑗𝜃)𝑋(𝑒𝑗(𝜔−𝜃))𝑑𝜃
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7.5.1 Impulse-Train Sampling (3/3)

• AS in Example 5.6, the Fourier transform of the 

sampling sequence        is

where 𝜔𝑠, the sampling frequency, equals 2𝜋/𝑁.

• Combining Eqs. (7.40) and (7.41), we have 

𝑃(ej𝜔) =
2𝜋

𝑁
෍

𝐾=−∞

+∞

𝛿(𝜔 − 𝐾𝜔𝑠)

𝑋𝑝(𝑒
𝑗𝜔) =

1

𝑁
෍

𝑘=0

𝑁−1

𝑋(𝑒𝑗(𝜔−𝑘𝜔𝑠))

𝑝[𝑛]

Sampling of a discrete-time signal: the new sequence 𝑥𝑝[𝑛]
resulting from the sampling process is equal to the original 
sequence 𝑥[𝑛] at integer multiples of the sampling period N
and is zero at the intermediate samples;

𝑥𝑝 𝑛 = ቊ
𝑥 𝑛 , if 𝑛 = an integer multiples of 𝑁
0, otherwise

𝑥𝑝 𝑛 = 𝑥 𝑛 𝑝 𝑛 = ෍

𝑘=−∞

∞

𝑥 𝑘𝑁 𝛿[𝑛 − 𝑘𝑁]

𝑋𝑝 𝑒𝑗𝜔 =
1

2𝜋
න
2𝜋

𝑃 𝑒𝑗𝜃 X 𝑒𝑗 𝜔−𝜃 dθ

𝑃 𝑒𝑗𝜔 =
2𝜋

𝑁
෍

𝑘=−∞

∞

𝛿(𝜔 − 𝑘𝜔𝑠)

𝑋𝑝 𝑒𝑗𝜔 =
1

𝑁
෍

𝑘=0

𝑁−1

𝑋(𝑒𝑗 𝜔−𝑘𝜔𝑠 )



2022/6/15

38

P.600
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P.600

H(e^jw)

[Example 7.4]  

Consider a sequence x[n] whose Fourier transform X(ejω) has the property that

To determine the lowest rate at which x[n] may be sampled without the possibility 

of aliasing, we must find the largest N such that

We conclude that Nmax = 4, and the corresponding sampling frequency is 2π/4 = 

π/2.

P.600-601
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then

With h[n] denoting the impulse response of the lowpass filter, we have

or equivalently,

P.601

where hr[n] is the impulse response of the interpolation filter.

7.5.2 Discrete-Time Decimation and Interpolation

the sampled sequence is typically replaced by a new sequence xb[n], which is simply 

every Nth value of xp[n]; that is,

Also, equivalently,

P.602
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Figure 7.34: Relationship between xp[n] corresponding to sampling and 

xb[n] corresponding to decimation

In between the sampling instants, 𝑥𝑝[𝑛] is known to be zero. Therefore, 

it is inefficient to represent, transmit, or store the sampled sequence. 

The sampled sequence 𝑥𝑝[𝑛] is typically replaced by a new sequence 

𝑥𝑏[𝑛]= 𝑥𝑝 𝑛𝑁 = 𝑥 𝑛𝑁 .

Decimation: the operation of extracting every  Nth sample.

𝑋𝑏 𝑒𝑗𝜔 = ෍

𝑘=−∞

∞

𝑥𝑏[𝑘]𝑒
−𝑗𝜔𝑘

=
1

𝑁
෍

𝑘=0

𝑁−1

𝑥𝑝[𝑘𝑁] 𝑒
−𝑗𝜔𝑘

Let 𝑛 = 𝑘𝑁, 𝑋𝑏 𝑒𝑗𝜔 = ෍

𝑛=𝑘𝑁

𝑥𝑝[𝑛]𝑒
−𝑗𝜔𝑛/𝑁

𝑋𝑏 𝑒𝑗𝜔 = ෍

𝑛=−∞

∞

𝑥𝑝[𝑛]𝑒
−𝑗𝜔𝑛/𝑁 = 𝑋𝑝 𝑒

𝑗𝜔
𝑁

Since 𝑥𝑝[𝑛]=0 when n is not an integer multiple of N.
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• The spectra for the sampled sequence and the decimated 

sequence differ only in a frequency scaling or normalization.

• The effect of decimation is to spread the spectrum of the 

original sequence over a larger portion of the frequency band.

Figure 7.35 Frequency-domain illustration of the 

relationship between  sampling   and decimation
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Figure 7.36  (1/2)
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Figure 7.37 (1/2)



2022/6/15

45

Example 7.5

Homework

• Homework(新版) 

• 7.3, 7.6, 7.8, 7.10, 7.14, 7.19

• 7.19舊版沒有

• Homework(舊版) 

• 7.3, 7.6, 7.9, 7.11, 7.15



2022/6/15

46


