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Abstract

Fractal sets can be generated by the iterated function system (IFS) codes us-

ing the contractive affine transformation. This paper presents various geometric

affine transformations and their composition effects for two-dimensional (2-D) fractal

sets. Here the geometric transformations include translation, rotation, shearing, dila-

tion/contraction, and reflection. First a hierarchical fixed point-searching algorithm

is proposed to determine the original coordinates of a 2-D fractal set directly from

its IFS code. Then the IFS code is modified according to the desired transformation.

Instead of post processing the generated result, arbitrary affine transformation on the

original fractal set can be directly obtained. On the other hand, the composite geo-

metric transformations for 2-D fractal sets are also available. Finally, a complicated

image frame can be synthesized by multiple 2-D fractal sets.
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1 Introduction

Fractal techniques for computer graphics and image compression have been attracted

a great deal of attentions more than two decades [1]. They can generate resolution-

independent and self-similar patterns by the ways different from conventional techniques

for computer graphics. On the other hand, the redundancy of self similarity in images is

first utilized for image compression in fractal coding standard schemes. Their compression

performance is comparable with other existing techniques. Therefore, the researches on

fractal related techniques are very active because of the superiority in many applications.

Fractal techniques originate from that the natural images such as clouds, mountains,

coastlines, plants, etc., have very much self-similarity. That is, these natural images have

the properties that their magnified subsets look like the whole set. Barnsley found that

a finite set of specific contractive transform functions (CATs) of iterated function system

(IFS) can generate a fractal image with the random iteration algorithm [1]–[3]. To find the

CATs of a fractal object (i.e., to encode a fractal image), the fractal object is partitioned

into several subsets, which differ to the entire object only in scale. Then the parameters

denoting the CATs between the whole object and all subsets are calculated and recorded

as the fractal code. The general form of a CAT W for a point located in the position (x, y)

is [2]

W (

[
x
y

]
) = A

[
x
y

]
+ b =

[
a b
c d

] [
x
y

]
+

[
e
f

]
, (1)

where the coefficients a, b, c, d, e, and f are real numbers and ∣ad − bc∣ < 1. An IFS can

achieve a very high compression ratio since only few sets of parameters denoting the CATs

are required. Its decoding algorithm is simple but both the encoding and decoding processes

are computation-intensive in conventional methods [1].
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Some methods [9], [13], [16] have been proposed to solve the inverse problem for encoding

procedure and some parallel algorithms [5], [8], [14] are provided to speed up the decoding

procedure. On the other hand, some optical architectures are proposed and implemented

in [6], [7], [18] to show the parallelism and high-speed nature of optics. However, the

methods above do not investigate the further transformation and the integration of the

generated fractal images in the decoding stage. Although both issues can be performed

after the fractal sets have been generated (i.e., use the post processing), both processes

are troublesome and inefficient. Therefore, the IFS code should be modified such that the

fractal sets can be directly generated with respect to the desired shapes and locations.

On the other hand, the composition effects of different affine transformations should be

explored. Furthermore, multiple fractal sets can be integrated into a single image frame.

Two previous studies [4], [15] report the generation and manipulation of 2-D fractal sets.

The former utilizes a multiple reduction copy machine and the latter introduces the non-

linear IFS using the genetic programming.

Original IFSs can generate 2-D fractal sets. The scale and coordinates of a fractal set

are unknown before the decoding stage is complete. However, its manipulation is impor-

tant in the applications of computer graphics. To manipulate the 2-D fractal sets, one

must first obtain the scale and coordinates information, then modify the original IFS code

to perform arbitrary affine transformation of the original fractal sets. The manipulation

of 2-D fractal sets is carried out using sequences of transformations. Translation, rotation,

reflection, dilation/contraction, and shearing are defined by matrix. With matrix multipli-

cations, their composition effects can be represented in a single matrix. An optical fractal

synthesizer that can direct control the position, rotation, and scaling of fractal sets was
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recently proposed [17]. This method used an IFS mother function in the proposed opti-

cal fractal synthesize to manipulate the parameters for rotating, scaling, and positioning

the generated patterns by optics. However, this OFS can decode only the fractal set that

consists of a regular pattern or texture because the affine transformations in this architec-

ture operate with equal probability. Also the image quality of the generated fractal sets is

limited by the physical resolution of the optical system. In practical, the digital methods

can generate more complicated fractal sets with the random iteration algorithm and easily

perform the integration of multiple fractal sets.

Figure 1 shows the schematic diagram of the fractal encoding and decoding systems

that we consider in this paper. For an original input image, the system goal is to obtain

the output image that has been reformed according to the desired geometric transform. To

achieve this goal, we propose a hierarchical fixed-point searching (HFPS) algorithm that

can efficiently determine the original size and coordinates of a 2-D fractal set from its IFS

code. This method is based on the Banach fixed-point theorem [1] and Pei’s parallel algo-

rithm [14]. First of all, we calculate the fixed points of all CATs and construct a convex

contour that enclose all of the points and without overlap. The sub-level CATs of each

CAT can be derived by the use of Pei’s parallel algorithm. By hierarchically calculating

the fixed points of sub-level CATs, the final contour is determined when no fixed points at

the next-level CATs contribute the extension for the contour. Therefore, the original size

of the decoded fractal image can be obtained. We next arbitrarily transform the original

image by modifying its IFS code according to the original size and coordinates. Geometric

affine transformations such as translation, dilation or contraction, rotation, shearing, and

reflection for fractal sets can be obtained. The composition effects of different affine trans-
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formations are also investigated. Finally, we can synthesize a complicated image frame,

which integrates multiple fractal sets generated with or without affine transformations.

2 HFPS Algorithm

The HFPS algorithm can automatically determine the original sizes and coordinates of

fractal sets in 2-D space. With the determined information, the parameters in the IFS

code can be modified so that the fractal set can be generated with arbitrary geometric

transformation. Figure 2 shows the diagram of the proposed HFPS algorithm. The steps

shown in this figure are described in the following subsections.

2.1 Fixed Points

First of all, the fixed point gi for each CAT Wi is calculated. In fractal coding, a CAT Wi

has a corresponding fixed point gi, which can be calculated by [14]

gi =

[
xi

yi

]
= (I−Ai)

−1bi, (2)

where I denotes the unit matrix. Fixed points are the important reference points in the

encoding stage of fractal coding. For each subimage of a partitioned fractal image, the

corresponding fixed point has to be selected in advance. To determine the parameters in

the CAT of a subimage, the relationship between the fixed point and the corresponding

point in the whole image are utilized [1]. At least three pairs of points in the subimage and

the whole image are selected such that six parameters in the fractal code can be obtained

by solving the six equations. It is easier to find the corresponding points if they are located

at the image boundary. Therefore, there is a large probability that a fixed point and

the corresponding point in the whole image are usually selected as located at the same
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point in the image boundary. That is, if we can determine the boundary points from the

fixed points, then the size and the location of a 2-D fractal set can be obtained before the

decoding process is complete. The HFPS algorithm is proposed based on this assumption.

2.2 Convex Contour Construction

The original size and the position of a 2-D fractal set shown in the 2-D space can be

measure by the contour just covering the whole fractal set. Then the ranges along the x

and y directions can be measured from the contour. To find the boundary points from the

fixed points generated from different CATs, a convex contour constructed by connecting

some of the fixed points is used. First of all, all the coordinates of the fixed points are

examined to find the maximum and minimum x and y addresses. The fixed points located

at the extreme addresses are connected to form a convex contour. Then other fixed points

are checked whether or not they can make the contour be more convex. The fixed points

that can make the contour more convex are left and their corresponding sub-level CATs

are then determined.Otherwise, they are discarded and the corresponding CATs will not

be used for determining their sub-level CATs.

2.3 Contour Extension Detection and Updating

Only the CATs whose fixed points contribute the extension of the convex contour are

required to determine their sub-level CATs and the corresponding sub-level fixed points

accordingly. From the final contour, we can determine the original size and coordinates of

a fractal set directly from its IFS code. Let the level-one contour be the convex contour

constructed from the fixed points of the original CAT.. For each CAT Wi, we then find its

child (level-two) transformations T
(2)
ij using Pei’s parallel algorithm and the corresponding
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fixed points g
(2)
ij . Similarly, we plot the level-two contour based on the fixed points g

(2)
ij

and check whether or not the contour is extended. Once a fixed point g
(2)
ij contributes the

extension to the convex contour, we set it as the new contour point, which will be used

to determine the CATs and the corresponding fixed points at the next level (level-three).

The process above is recursively and hierarchically executed until the criterion that not any

fixed point at the level n+1 contributes the extension to the contour at the level n. We thus

obtain the size and the coordinate information of the fractal set from the information in the

x and y ranges of the final convex contour. Four points located at the north, south, west,

and east corners of the contour are taken to obtain their x and y coordinates. Therefore the

size of the original fractal set can be determined by calculating the width at the horizontal

direction, xmax − xmin, and the length at the vertical direction, ymax − ymin, respectively.

2.4 Summarization

The procedures of the proposed HFPS algorithm for the size determination of the fractal

set are summarized as follows:

Step 1. The fixed points (xi, yi) for all CATs Wi are calculated [14]. Then we plot the

level-one convex contour using the calculated fixed points.

Step 2. Apply Pei’s parallel algorithm to generate T
(2)
ij for each CAT Wi.

Step 3. For each T
(2)
ij , determine the corresponding fixed points g

(2)
ij . Compare with the

fixed points in the previous level; check if the contour is extended or not.

Step 4. If the contour is extended, eliminate the fixed point at the previous level and

refresh it by the new fixed points. Record the T
(2)
ij such that we can employ Pei’s
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parallel algorithm to generate the sublevel CAT T
(3)
ijk . Otherwise, stop extending

the CAT at the next level, and prune this branch with index ijk.

Step 5. With the steps similar to steps 2∼4, recursively perform the propagation of T
(n)
ijkl⋅⋅⋅

and the fixed-point calculation until that no extension of x and y ranges has

occurred in the current step.

Step 6. The points in the final contour are used to obtain the maximum and the minimum

values of the x and y coordinates, which specifies the original coordinates and size

of the fractal set.

The change of coordinates for the CAT and the basic resizing and relocation effects

on the fractal sets have been previously mentioned in Refs. [1] and [20], respectively.

To perform arbitrary geometric transformation for original fractal sets, the parameters

a, b, c, d, e and f in the IFS code will be modified based on the method shown in the next

section.

3 Geometric Transformations

Let (x′, y′) denote the new coordinate system of the original point (x, y) in the 2-D fractal

set. That is, (x′, y′) = Φ([x, y]t) denotes the new coordinates of the point, where Φ denotes

the coordinate transformation. Let W ′([x′, y′]t) denote the same transformation as W but

expressed in the new coordinate system. Then the relationship between the two CATs in

two coordinate systems is expressed [1] by

W ′(

[
x′

y′

]
) = (Φ ∘W ∘ Φ−1)(

[
x′

y′

]
) = A′

[
x′

y′

]
+ b′. (3)
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In the following subsections, we will investigate the modification of the IFS code in order

to perform various geometric transformations. That is, the new matrices A′ and b′ will be

determined according to the desired affine transformation.

3.1 Translation

Suppose that the original 2-D fractal set is shifted by ℎ in x direction and v in y direc-

tion, respectively. In this case, Φ([x, y]t)=([x + ℎ, y + v]t) and its inverse transform is

Φ−1([x′, y′]t)=([x′ − ℎ, y′ − v]t). Therefore, the new CAT W ′ becomes

W ′(

[
x′

y′

]
) = A

[
x′ − ℎ
y′ − v

]
+ b+

[
ℎ
v

]

= A

[
x′

y′

]
+ (I−A)

[
ℎ
v

]
+ b

= A

[
x′

y′

]
+ b′, (4)

where I denotes the unit matrix. Apparently, the matrix A does not change and we can

use the modified matrix b′ to relocate the original fractal set, where

b′ =

[
(1− a)ℎ− bv + e
−cℎ+ (1− d)v + f

]
. (5)

That is, only the parameters e and f are modified for the translation on the original fractal

set.

3.2 Dilation and Contraction

To change the scales of original fractal sets, the new CAT can be obtained by using Equation

3. Here three cases are discussed as follows:

1) Dilation or contraction in x-direction with the factor ¯x, ¯x > 0: The transformation

matrix Φ and the modified matrices A′ and b′ in the new CAT are:

Φ =

[
¯x 0
0 1

]
, A′ =

[
a b¯x

c/¯x d

]
, b′ =

[
e¯x

f

]
. (6)
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2) Dilation or contraction in y-direction with the factor ¯y, ¯y > 0: The transformation

matrix Φ and the modified matrices A′ and b′ in the new CAT are:

Φ =

[
1 0
0 ¯y

]
, A′ =

[
a b/¯y

c¯y d

]
, b′ =

[
e

f¯y

]
. (7)

3) Simultaneous dilation or contraction in x-direction with the factor ¯x and in y-direction

with the factor ¯y (¯x ∕= ¯y): The transformation matrix Φ and the modified matrices A′

and b′ in the new CAT are:

Φ =

[
¯x 0
0 ¯y

]
, A′ =

⎡
⎣ a b¯x

¯y

c¯y

¯x
d

⎤
⎦ , b′ =

[
e¯x

f¯y

]
. (8)

Note that when both factors are equal (¯x = ¯y = ¯), Eq. (7) becomes

Φ = ¯

[
1 0
0 1

]
,A′ = A,b′ = ¯

[
e
f

]
.

3.3 Rotation

To rotate the original fractal set with a clockwise angle µ with respect to the origin and

the original x axis. The transformation matrix Φ and the modified matrices A′ and b′ in

the new CAT are:

Φ =

[
cos µ − sin µ
sin µ cos µ

]
,

A′ =

[
a cos2 µ − (b+ c) cos µ sin µ + d sin2 µ (a− d) cos µ sin µ + b cos2 µ − c sin2 µ
(a− d) cos µ sin µ − b sin2 µ + c cos2 µ a sin2 µ + (b+ c) cos µ sin µ + d cos2 µ

]
, (9)

b′ =

[
e cos µ − f sin µ
e sin µ + f cos µ

]
.

By using the modified IFS code, the generated fractal set can be rotated by any given angle

µ. The fractal set can be arbitrary rotated based on any point after we shift the original

origin to the assigned point.
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3.4 Shearing

Three cases of shearing the original 2-D fractal set with respect to the origin are discussed

as follows:

1) Shearing the fractal set in x-direction with the factor kx. The transformation matrix Φ

and the modified matrices A′ and b′ in the new CAT are:

Φ =

[
1 kx
0 1

]
, A′ =

[
a+ ckx b+ (d− a)kx − ck2

x

c d− ckx

]
, b′ =

[
e+ fkx

f

]
. (10)

2) Shearing in y-direction with the factor ky. The transformation matrix Φ and the modified

matrices A′ and b′ in the new CAT are:

Φ =

[
1 0
ky 1

]
, A′ =

[
a− bky b
c+ (a− d)ky − bk2

y d+ bky

]
, b′ =

[
e

eky + f

]
. (11)

3) Shearing in x- and y-direction with the factors kx and ky, respectively. The transforma-

tion matrix Φ and the modified matrices A′ and b′ in the new CAT are:

Φ =

[
1 kx
ky 1

]
, A′ =

⎡
⎣

a−bky+ckx−dkxky
1−kxky

(d−a)kx+b−ck2x
1−kxky

(a−d)ky−bk2y+c

1−kxky

−akxky+bky−ckx+d
1−kxky

⎤
⎦ , b′ =

[
e+ fkx
eky + f

]
. (12)

3.5 Reflection

The reflected fractal sets with four different directions are given as follows:

1) Reflection with respect to x axis. The transformation matrix Φ and the modified matrices

A′ and b′ in the new CAT are:

Φ =

[
1 0
0 −1

]
, A′ =

[
a −b
−c d

]
, b′ =

[
e
−f

]
. (13)

2) Reflection with respect to y axis. The transformation matrix Φ and the modified matrices

A′ and b′ in the new CAT are:

Φ =

[
−1 0
0 1

]
, A′ =

[
a −b
−c d

]
, b′ =

[
−e
f

]
. (14)
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3) Reflection with respect to x = y axis. The transformation matrix Φ and the modified

matrices A′ and b′ in the new CAT are:

Φ =

[
0 1
1 0

]
, A′ =

[
d c
b a

]
, b′ =

[
f
e

]
. (15)

4) Reflection with respect to x = −y axis. The transformation matrix Φ and the modified

matrices A′ and b′ in the new CAT are:

Φ =

[
0 −1
−1 0

]
, A′ =

[
d c
b a

]
, b′ =

[
−f
−e

]
. (16)

4 Composition Effects

Since all of the transformations shown above are linear, they can be arbitrarily merged

to obtain their composition effects. A sequence of the transformations shown in above

subsections can be performed by a single linear transformation defined by the product

of the matrices. However, the translation and any sequence of transformations involving

translation cannot be combined in this manner into a single matrix. If the homogeneous

coordinates [19] are used to describe points in a plane, then the translation can also be

accomplished through matrix multiplication, and any sequence of these transformations

can be defined in terms of a single matrix. In homogeneous coordinates, a third component

‘1’ is added to each coordinate, i.e., [x, y, 1]t, and

W (

⎡
⎢⎣
x
y
1

⎤
⎥⎦) = M

⎡
⎢⎣
x
y
1

⎤
⎥⎦ =

⎡
⎢⎣
a b e
c d f
0 0 1

⎤
⎥⎦

⎡
⎢⎣
x
y
1

⎤
⎥⎦ , (17)

where M denotes the CAT represented in the homogeneous coordinates. The matrices cor-

responding to translation L, rotation R, dilation/contraction D, shearing S, and reflection

F in homogeneous coordinates are given as follows:

L =

⎡
⎢⎣
1 0 ℎ
0 1 v
0 0 1

⎤
⎥⎦ , R =

⎡
⎢⎣
cos µ − sin µ 0
sin µ cos µ 0
0 0 1

⎤
⎥⎦ , D =

⎡
⎢⎣
¯x 0 0
0 ¯y 0
0 0 1

⎤
⎥⎦ ,

12



S =

⎡
⎢⎣

1 kx 0
ky 1 0
0 0 1

⎤
⎥⎦ , Fx =

⎡
⎢⎣
1 0 0
0 −1 0
0 0 1

⎤
⎥⎦ .

Note that the matrix Fx is corresponding to reflection with x axis. The matrices corre-

sponding to other reflection directions can be obtained with similar methods. The new

matrices corresponding to above transformations in new coordinates now become

ML = LML−1 =

⎡
⎢⎣
a b (1− a)ℎ− bv + e
c d −cℎ+ (1− d)v + f
0 0 1

⎤
⎥⎦ ,

MR = RMR−1

=

⎡
⎣

a cos2 µ − (b+ c) cos µ sin µ + d sin2 µ (a− d) cos µ sin µ + b cos2 µ − c sin2 µ e cos µ − f sin µ
(a− d) cos µ sin µ − b sin2 µ + c cos2 µ a sin2 µ + (b+ c) cos µ sin µ + d cos2 µ e sin µ + f cos µ

0 0 1

⎤
⎦ ,

MD = DMD−1 =

⎡
⎢⎢⎣

a b¯x

¯y
e¯x

c¯y

¯x
d f¯y

0 0 1

⎤
⎥⎥⎦ ,

MS = SMS−1 =

⎡
⎢⎢⎣

a−bky+ckx−dkxky
1−kxky

(d−a)kx+b−ck2x
1−kxky

e+ fkx
(a−d)ky−bk2y+c

1−kxky

−akxky+bky−ckx+d
1−kxky

eky + f

0 0 1

⎤
⎥⎥⎦ ,

MFx = FxMF−1
x =

⎡
⎢⎣

a −b e
−c d −f
0 0 1

⎤
⎥⎦ .

To combine different CAT matrices, we can directly multiply the corresponding matri-

ces. For example, the dilation followed by a translation and then a rotation on a 2-D fractal

set would be defined by DRL(x), where x denotes the new vector in the homogeneous co-

ordinates shown above. The composite transformation DRL is desired to be described

by a single matrix. Then the composite matrix Mcomp can be determined in advance as

follows:

Mcomp = (DRL)M(DRL)−1. (18)

By using the parameters in this composite matrix, the fractal set is generated by reflect-

ing the composition effects. In addition to the composition of multiple transformations for
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a 2-D fractal set, multiple fractal objects can be integrated in a single image frame. How-

ever, their original coordinates and scales may be different. To integrate different fractal

sets into a single image frame, their original sizes and coordinates should be investigated

by the proposed HFPS algorithm. Then their IFS codes can be modified in advance by the

method shown in Section 3. That is, the IFS codes are modified according to the desired

transformations so that the fractal sets can be generated with the desired transformations.

With elaborate design, multiple fractal sets can be integrated to synthesize a complicated

image frame.

5 Experimental Results

Figure 3 shows four original fractal sets generated from the IFS codes shown in Table 1:

(a) Sierpinski triangle, (b) Fern, (c) Castle, and (d) Snowflake. First of all, the proposed

HFPS algorithm is used to find the convex contours of four fractal sets. Figure 4(a)–(d)

shows the determined convex contours, in which the fixed points for different CATs are

represented by different symbols. The symbols ‘∘,’ ‘×,’ ‘+,’ ‘∗,’ and ‘⋅’ denote the fixed

points of the first, second, third, fourth, and fifth CATs, respectively, which are shown

in Table 1. Note that the fixed points determined from the same or different CATs, or

from different levels may overlap. The level-one contour is plotted with a dotted line and

level-two one is plotted with a dashed line. As shown in Figure 4(a), (c), and (d), the fixed

points of the level-two CATs cannot be used to extend the level-one contour. Therefore,

only the fixed points of the level-one and level-two CATs are calculated. As shown in

Figure 4(b), four level-two fixed points belonging to three level-two CATs are outside the

level-one contour. Therefore, the level-three CATs of these level-two CATs and their 12
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fixed points are further determined. Because the level-three fixed points cannot be used to

extend the contour, the extension of the contour for Fern stops at level two. The reason

is that, in the encoding stage, the fixed points are usually selected at the corner points of

the image for easy encoding. Therefore, only the sub-CATs in very few levels are utilized

in the proposed HFPS algorithm.

Table 2 shows that only few fixed points are calculated on the different levels such that

we can determined the sizes and the locations for the four fractal sets. In conventional

random iteration algorithm, thousands of iterations are required to generate a complete

fractal set. If the same iteration numbers are used in the conventional random iteration

algorithm, the size and location information cannot be obtained. Figure 5 shows the

generated fractal sets in which the numbers of points shown in Table 2 are used in the

random iteration algorithm. Obviously, they all are very different from those shown in

Fig. 3. That is, we cannot obtain their correct sizes and locations from such few numbers

of iterations in conventional random iteration algorithm. Therefore, the proposed HFPS

algorithm is very efficient because of its low computation load. A simplified comparison

between a special case of the proposed method and conventional post-processing scheme

has been reported in Ref. [20]. The ranges of x and y addresses obtained from Figure 4

are the same as those shown in Table 3, which are obtained from the decoded images. In

addition to the ranges of the fractal set, a coarse shape of the fractal set by connecting

the fixed points in each level can also be obtained. Figure 6 shows the coarse shapes of

the fractal sets in Figure 4. Therefore, one can roughly understand the original shapes of

the fractal sets in advance. Previous work shows that the determination of fixed points are

also useful for self-similarity detection [10] and patterns clustering [11], [12] in analyzing
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fractal patterns.

The experimental results for arbitrary affine transformation by using the methods shown

in Section 3 are given as follows: First of all, a fractal set whose coordinates are arbitrarily

shifted by (ℎ, v) to a desired location is considered. The Fern generated from the modified

IFS code is shown in Figure 7, which has been shifted by 2.18 in x direction so that

all of the new coordinates are positive. The dilated and contracted Sierpinski triangles

generated from the modified IFS codes are shown in Figure 8(a)–8(d). The corresponding

dilation/contraction coefficients are (a) ¯x = 2, ¯y = 1, (b) ¯x = 1, ¯y = 2, (c) ¯x = ¯y = 2,

and (d) ¯x = ¯y = 0.5, respectively. Figure 9(a)–9(d) shows the rotated Sierpinski triangles

using the modified IFS codes. The corresponding rotation angles are (a) µ = 0o, (b) µ = 90o,

(c) µ = 180o, and (d) µ = 270o, respectively. The sheared Sierpinski triangles generated

from the modified IFS codesare shown in Figure 10(a)–10(d). The corresponding shearing

factors are (a) kx = 0.5, ky = 0, (b) kx = −0.5, ky = 0, (c) kx = 0, ky = 1, and (d)

kx = 0, ky = −1, respectively. Figure 11(a)–11(d) shows the Castle generated from the

modified IFS code. They are the original Castle reflected with respect to different directions:

(a) x axis, (b) y axis, (c)x = y axis, and (d) x = −y axis.

Figure 12 shows the original Fern and the Fern generated with the composite transfor-

mation in Equation 18. The coefficients in the composite transformation are ℎ = v = 10,

µ = 45∘, ¯x = ¯y = 0.8, and kx = ky = 0.1. Finally, Two image frames synthesized by

multiple fractal sets are shown in Figure 13(a) and 13(b). Both synthesized image frames

are composed of multiple fractal sets with elaborate design.
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6 Conclusion

In conclusion, we proposed a hierarchical fixed point-searching algorithm that can deter-

mine the coarse shape, the original coordinates, and their scales of 2-D fractal sets directly

from its IFS code. Then the IFS codes are modified to generate the new 2-D fractal sets that

can be the arbitrary affine transformation of original fractal sets. The transformations for

2-D fractal sets include translation, scaling, shearing, dilation/contraction, rotation, and

reflection. The composition effects of the transformations above can also be accomplished

through the matrix multiplication and represented by a single matrix. Finally, different

fractal sets with and without further transformations can be synthesized into a complicated

image frame with elaborate design.

In our future work, we will extend the manipulation for 2-D fractal sets to three-

dimensional cases. Three-dimensional fractal sets can provide more variety for the applica-

tions on computer graphics. Moreover, our work can be adapted to the object-based coding

for grayscale images, whose concept has been used in MPEG-4 standard. The objects in

image frames, coded by fractal techniques, can be transformed or manipulated upon our

need with the method shown in this paper.
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Table 1: IFS codes for Sierpinski triangle, Fern, Castle, and Snowflake.

Image W a b c d e f p
1 0.5 0 0 0.5 0 0 0.33

Sierpinski triangle 2 0.5 0 0 0.5 1 0 0.33
3 0.5 0 0 0.5 0.5 0.5 0.34
1 0 0 0 0.16 0 0 0.01

Fern 2 0.2 -0.26 0.23 0.22 0 1.6 0.07
3 -0.15 0.28 0.26 0.24 0 0.44 0.07
4 0.85 0.04 -0.04 0.85 0 1.6 0.85
1 0.5 0 0 0.5 0 0 0.25

Castle 2 0.5 0 0 0.5 2 0 0.25
3 0.4 0 0 0.4 0 1 0.25
4 0.5 0 0 0.5 2 1 0.25
1 0.333 0 0 0.333 0.333 0 0.2
2 0.333 0 0 0.333 0 0.333 0.2

Snowflake 3 0.333 0 0 0.333 0.333 0.333 0.2
4 0.333 0 0 0.333 0.333 0.666 0.2
5 0.333 0 0 0.333 0.666 0.333 0.2

Table 2: The number of the determined fixed points for four fractal sets.

Image Level 1 Level 2 Level 3 Total number
Sierpinski triangle 3 9 0 12

Fern 4 16 12 32
Castle 4 26 0 20

Snowflake 5 25 0 30

Table 3: The measured x and y ranges and the size of four fractal sets.

Image xmin xmax ymin ymax size
Sierpinski triangle 0 2 0 1 2×1

Fern -2.18 2.66 0 10.0 4.8×10
Castle 0 4 0 2 4×2

Snowflake 0 1 0 1 1×1
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Figure 2: Block diagram of the proposed HFPS algorithm.
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Figure 3: The decoded fractal sets by using the random iteration algorithm: (a)Sierpinski
triangle, (b) Fern, (c) tree, and (d) Snowflake.
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Figure 4: The determined contours based on the proposed HFPS algorithm: (a) Sierpinski
triangle, (b) Fern, (c) Castle, and (d) Snowflake.
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Figure 5: The fractal sets generated by the random iteration algorithm only using the
numbers shown in Table 2.
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Figure 6: The coarse shapes of the fractal sets in Figure 3.
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Figure 7: The shifted Fern generated by the modified IFS code.
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Figure 8: The dilated and contracted Sierpinski triangles generated by the modified IFS
codes.
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Figure 9: The rotated Sierpinski triangles generated by the modified IFS codes.
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Figure 10: The sheared Sierpinski triangles generated by the modified IFS codes.
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Figure 11: The Castle with different reflection directions, which are generated by the
modified IFS codes .
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28



(a)
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Figure 13: Two examples of the synthesized image frames that are integrated from multiple
fractal sets.
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