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1 Introdu
tionThe fra
tal 
oding s
heme is a new te
hnique for image 
ompression and has evolved greatly from its�rst version proposed by Ja
quin [1℄, [2℄. In 
onventional fra
tal 
oding s
hemes, an image is partitionedinto non-overlapping range blo
ks. The larger domain blo
ks are sele
ted from the same image and 
anoverlap. A grays
ale image is en
oded by mapping the domain blo
k D to the range blo
k R with the
ontra
tive aÆne transformation [2℄ R̂ = �f� � (S ÆD) +4gg; (1)where SÆ represents the 
ontra
tion operation that maps the domain blo
k to a range blo
k. Then theparameters (
alled the fra
tal 
ode) des
ribing the 
ontra
tive aÆne transformation that has the mini-mum mat
hing error between the original range blo
k R and the 
oded range blo
k R̂ are transmittedor stored. The fra
tal 
ode 
onsists of the 
ontrast s
aling �, luminan
e shift 4g or the blo
k mean(the average pixel value of the range blo
k) �R [3℄, isometry �, and the position PD of the best-mat
hdomain blo
k in the domain pool. In the de
oding stage, an arbitrary image is given as the initial imageand the de
oded image is repeatedly re
onstru
ted by applying the 
ontra
tive aÆne transformation tothe iterated image.There are many modi�ed versions proposed to improve the fra
tal 
oding te
hniques. Most of thestudies fo
us oni) the type of the image partition, e.g., [26℄�[30℄,ii) re�ning the blo
k transformation, e.g., [4℄�[10℄, [24℄,iii) the redu
tion of the 
omplexity of the en
oding pro
ess, e.g., [21℄, [31℄�[33℄,iv) speeding up the iterative de
oding pro
ess [11℄�[14℄, andv) the 
ombination of the 
onventional fra
tal 
oding s
heme with traditional blo
k-based image 
odingte
hniques, e.g., [25℄, [34℄�[37℄.However, only few literatures [4℄, [23℄ make a study of designing an eÆ
ient domain pool in whi
hthe redundan
ies between the domain blo
ks 
an be redu
ed. Therefore, we aim to design an eÆ
ientdomain pool for the fra
tal 
oding s
hemes in this paper. In Ref. [4℄, the LBG pro
edure is designedfor 
odebook (domain pool) training in 
onventional fra
tal 
oding s
hemes. It 
onsiders the en
oding2



pro
edure only and it is not easy to obtain an identi
al 
odebook in the de
oder unless an o�-linetransmission is used. In our design, the domain pool is on-line transmitted and hen
e we obtain anidenti
al 
odebook in the de
oder. On the other hand, a still image 
oding based on ve
tor quantization(VQ) and fra
tal approximation utilized the LBG algorithm to design the domain pool [23℄. The domainpool generated in [23℄ is based on the image approximated by transform VQ and then de
imated by afa
tor of four. And the stati
 
odebook is previously 
onstru
ted with several images of di�erent types.As we will des
ribe in Se
tion 4, it has a great di�eren
e with our domain pool design sin
e we will
onstru
t the domain pool (e.g., 
odebook) only with the mean image and not with several images.In general, the domain pool in 
onventional s
hemes 
onsists of the domain blo
ks obtained bysubsampling the original image [1℄, [17℄, [26℄, or 
hoosing some neighboring blo
ks of the range blo
k[5℄, [21℄, [37℄. A better 
oding performan
e 
an be a
hieved if we use a larger domain pool in theen
oding stage. However, there exists some redundan
ies between the domain blo
ks, espe
ially for alarge domain pool or the domain blo
ks 
hosen from the neighboring blo
ks of the range blo
k. If we 
anredu
e the redundan
ies between the domain blo
ks, then the 
onstru
ted domain pool be
omes moreeÆ
ient. Therefore, a better performan
e 
an be expe
ted be
ause the domain blo
ks in our domainpool 
ontain more information than those in the domain pools of 
onventional fra
tal 
oding s
hemes.The LBG algorithm [18℄ used to generate the 
odebook in the VQ te
hniques [16℄ has shown itsability to redu
e the redundan
ies between the training ve
tors. Based on the same 
odebook in boththe en
oder and de
oder1, we 
an en
ode/de
ode an image. Sin
e there is no transmission of domainblo
ks in 
onventional fra
tal 
oding s
hemes, the LBG algorithm 
annot be dire
tly applied to generatethe domain blo
ks. In order to obtain the same domain blo
ks in both the en
oder and de
oder in thefra
tal 
oding s
heme, here we propose an iteration-free fra
tal 
oding s
heme that 
an satisfy thisrequirement.The blo
k mean 
an be found in the fra
tal 
ode in a modi�ed 
ontra
tive aÆne transformation[3℄. We 
an generate the same mean image whose pixel values are the blo
k means of all the rangeblo
ks in both the en
oder and the de
oder. Therefore, the LBG-based method 
an be used to designthe domain pool based on the mean image. Here two novel methods for designing the domain poolare employed. First, the domain pool is 
onsisted of the domain blo
ks generated by the LBG-based1The VQ te
hniques use an o�-line transmission of 
odebook.3



method. Next, the blo
k-averaging method is proposed to avoid the training pro
ess in the LBG-basedmethod. The LBG-based method redu
es the redundan
ies between the generated domain blo
ks andthus the 
onstru
ted domain pool is more eÆ
ient. Compared with the 
onventional fra
tal s
hemesthose require iterations, the 
oding performan
e is improved based on the LBG-based and the blo
k-averaging methods for the domain pool design in the proposed iteration-free fra
tal 
oding s
heme. The
omputer simulation shows that the de
oding time is greatly redu
ed and the de
oded image quality isalso improved.The organization of this paper is as follows: We introdu
e the 
onventional fra
tal 
oding s
hemethat requires iterations in the de
oding stage in Se
tion 2. Se
tion 3 des
ribes the proposed iteration-free
ode
 for fra
tal image 
ompression. Two design methods of the domain pool are employed to improvethe performan
e of the iteration-free 
oding s
heme in Se
tion 4. We perform the 
omputer simulationin Se
tion 5 to verify the improvement of the proposed domain pool design for the iteration-free s
heme.Finally, a 
on
lusion is given in Se
tion 6.2 Conventional Fra
tal Coding S
hemeThe employed domain pool designs based on the LBG-based and the blo
k-averaging methods are
ompared with those in the 
onventional fra
tal 
oding s
hemes. In 
onventional fra
tal 
oding s
hemes,the 
ontrast s
aling is no more than one to avoid the possible divergen
e in the iterative de
oding pro
ess.On the other hand, we repla
e luminan
e shift in the fra
tal 
ode by the blo
k mean [3℄ to obtain agood initial image in the de
oding stage.The domain pool designs in the 
onventional fra
tal 
oding s
hemes are des
ribed as follows: Basi-
ally, the domain blo
ks are sele
ted from the original image and the blo
k size is four times as largeas the range blo
k (i.e., D=4R). We investigate the 
oding performan
es of the 
onventional fra
tal
oding s
heme that uses two methods to design the domain pool. First of all, the domain pool 
onsistsof the domain blo
ks subsampled from the original image and it is denoted as the `subsampling' method.For an image of size M �M , the sampling period (T ) in both the horizontal and verti
al dire
tions isdetermined by T = b M �BpND � 1
; T � 1; (2)4



where B �B is the domain blo
k size and ND is the number of the domain blo
ks in the domain pool,and b�
 denotes 
hoosing a smaller and the 
losest integer of the real number in the bra
ket. Next,we 
hoose the ND domain blo
ks that are neighboring to the range blo
k and it is denoted as the`neighboring' method. Then the 
ontra
tive aÆne transformation is used to �nd the fra
tal 
ode forea
h range blo
k.In the de
oding stage, the initial image 
onsists of the range blo
ks whose pixel values are equalto ea
h blo
k mean. The de
oded image is iteratively re
onstru
ted with the same 
ontra
tive aÆnetransformation that was denoted in the fra
tal 
ode. Sin
e the initial image in the de
oder is di�erentfrom the original image in the en
oder, the domain blo
ks in the en
oder are di�erent from that foundin the de
oder. There exists a distortion between the 
oded image in the en
oder and the de
odedimage in the de
oder. To redu
e this distortion, it is desirable to generate the same domain pool inboth the en
oder and de
oder.The 
riterion for the de
oded image to a
hieve a 
onvergen
e is determined as follows: Let the nthiterated image be denoted as f (n). The average error e(n) between the nth and (n�1)th de
oded imagesis 
al
ulated by e(n) = 15122 512Xi=1 512Xj=1(f (n)i;j � f (n�1)i;j )2; (3)where f (n)i;j denotes the (i; j)th pixel in nth de
oded image. If the ratio
 = je(n)� e(n� 1)je(n� 1) (4)is smaller than a threshold value 
th, the de
oded image 
onverges and the iteration pro
ess terminates.Otherwise, the iteration pro
ess will not stop until the 
riterion 
 � 
th is satis�ed.3 Iteration-Free Code
 DesignIn order to obtain the same domain blo
ks in both the en
oder and de
oder without using an o�-line transmission, here we propose an iteration-free fra
tal image 
ode
 that the information of thedomain blo
ks are hidden in the fra
tal 
odes. Therefore, the LBG-based and the proposed blo
k-averaging methods 
an be applied to redu
e the redundan
ies between the generated domain blo
ks.The proposed en
oder and de
oder are des
ribed in the following subse
tions.5



3.1 En
oderThe basi
 
ow 
hart of the en
oder in the proposed iteration-free s
heme is shown in Fig. 1. Theinput M�M image is partitioned into the non-overlapping range blo
ks of size B�B. First of all, wesequentially measure the mean and varian
e of ea
h range blo
k. After all the means of the range blo
ksare obtained, we 
an generate a mean image of size M=B�M=B with ea
h pixel 
orresponding to theblo
k mean. If the varian
e of the range blo
kVarfRg = 1B2 X0�i;j<B(ri;j � �R)2 (5)(where ri;j denotes the (i; j)th pixel in the range blo
k) is smaller than the threshold value Eth, thenthe range blo
k is 
oded by the mean. Otherwise, the range blo
k will be 
oded by the 
ontra
tiveaÆne transformation. Note that in this 
ase, the size of the mean image should be mu
h larger thanthat of the domain blo
k, i.e., M=B�M=B � B�B. Otherwise, it will not be easy to �nd a goodmapping between the domain and range blo
ks be
ause only a few domain blo
ks 
an be taken fromthe mean image. The size of the domain blo
k is the same as that of the range blo
k and thus the
ontra
tion pro
edure in 
onventional fra
tal 
oding s
hemes is eliminated. We therefore pro
eed witha new 
ontra
tive aÆne transformation between the range blo
k and the domain blo
k generated fromthe mean image. The generation of the domain blo
k will be dis
ussed in Se
tion 4.The parameters used in the new 
ontra
tive aÆne transformation are spe
i�ed as follows: Theluminan
e shift is repla
ed by the mean [3℄ whi
h is 
oded by six bits. The 
ontrast s
aling is usuallysmaller than 1.0 to avoid the divergen
e 
aused by the iterations in 
onventional fra
tal 
oding s
hemes.However, we 
an make the 
ontrast s
aling be greater than 1.0 be
ause our s
heme is iteration-free. Asshown in [17℄, the 
ontrast s
aling 
an be greater than one to a
hieve the minimum distortion betweenthe range blo
k and the transformed domain blo
k. Therefore, we use an extended range for the 
ontrasts
aling. In our design, the 
ontrast s
aling is determined by testing all the values in the following setfn=4, n=1, 2, 3, � � �, 8g to �nd the best one that minimizes the distortion. We thus need three bits todenote the 
ontrast s
aling. On the other hand, the eight isometries for shu�ing the pixels in the blo
kare the same as those in [2℄ and are 
oded by three bits.
6



The new 
ontra
tive aÆne transformation 
an be expressed byR̂ = �f� �D + �R � � � �Dg = �f� � (D � �D) + �Rg; (6)where R̂ is the 
oded range blo
k and �D is the mean of domain blo
k. Note that the 
ontra
tionpro
edure is eliminated and the term �R�� ��D is equal to the luminan
e shift in [2℄. After testing allthe 
ombinations of the parameters in Eqn. (6), the fra
tal 
ode is determined while the 
oded blo
k R̂has the minimum distortion from the original range blo
k R. The distortion between the original and
oded range blo
ks is represented by the mean-squared-error (MSE) measurement de�ned asMSE(R; R̂) = 1B2 X0<i;j�B(ri;j � r̂i;j)2; (7)where r̂i;j denotes the (i; j)th pixel in the 
oded range blo
k. We �nally atta
h a header for ea
h rangeblo
k to denote its 
oding status (either 
oded by the mean or aÆne transformation). Therefore, thede
oder 
an 
orre
tly re
onstru
t ea
h 
oded range blo
k a

ording to the header.3.2 De
oderFig. 2 shows the 
ow 
hart of the de
oder in the proposed iteration-free s
heme. We �rstly re
eivethe entire fra
tal 
ode and determine whether or not the range blo
k is 
oded by the mean from itsheader. The mean image is re
onstru
ted with the mean information in the fra
tal 
odes. Note that thismean image is identi
al to the mean image used in the en
oder sin
e both are 
onstru
ted by the sameblo
k means. Therefore, the domain blo
ks generated from both mean images are also the same. If theblo
k is 
oded by the mean, the value of ea
h pixel in the de
oded blo
k is equal to the mean value.Otherwise, we perform the 
ontra
tive aÆne transformation to re
onstru
t the 
oded range blo
k. Thede
oding pro
ess ends when the last range blo
k is re
onstru
ted.At this point, no iterations are required and thus no 
onvergen
e 
riterion and divergen
e problemfor the de
oded image to be 
on
erned with. The de
oding of the 
onventional fra
tal 
oding s
hememay require two iteratively refreshed images or one image memory [12℄ in the iteration pro
ess. However,only the �xed mean image that 
an be re
onstru
ted from the re
eived fra
tal 
odes is required in ouriteration-free s
heme. Hen
e the required memory size in the proposed iteration-free de
oder is mu
hsmaller than that in the 
onventional fra
tal image de
oder. On the other hand, having no iterationsmeans that the range blo
ks 
an be de
oded in parallel. The ar
hite
tural 
omplexity of the proposed7



de
oder is obviously lower than that of the 
onventional de
oder that requires iterations. Therefore,the proposed de
oder is very suitable for the hardware implementation and high speed appli
ations.4 EÆ
ient Domain Pool DesignIn order to obtain an eÆ
ient domain pool in whi
h the redundan
ies between the domain blo
ksare redu
ed, here we �rstly employ the LBG algorithm and se
ondly propose a novel bla
k-averagingmethod to generate the domain blo
ks. Therefore, we expe
t that the 
oding performan
e will beimproved 
ompared with the 
onventional fra
tal s
hemes.4.1 LBG-Based DesignFra
tal 
oding te
hniques have shown a similarity to VQ te
hniques and 
an be 
onsidered as the self-VQ for images [1,19℄. Therefore, the 
odebook and 
odeve
tor used in the VQ te
hnique are similar tothe domain pool and domain blo
k used in fra
tal 
oding s
hemes, respe
tively. In VQ, the en
oder andde
oder use the same 
odebook and the 
oded and de
oded images in both the en
oder and de
oderare also the same. As shown in Se
tion 3, we 
an obtain the same mean image in both the en
oder andthe de
oder without using an o�-line transmission in the proposed iteration-free 
ode
. We thus designan eÆ
ient domain pool based on the mean image.The LBG algorithm [18℄ is usually used to design an eÆ
ient 
odebook in the VQ te
hniques. Weapply the LBG algorithm to design the domain pool in the proposed iteration-free s
heme. Here we usethe mean image as the training image and all the possible image blo
ks (with the same size as the rangeblo
k) in the mean image as the training ve
tors. Suppose that there are K training ve
tors denoted byvi for 1� i � K in the training image, we estimate L re
onstru
tion ve
tors (i.e., domain blo
ks) fromK training ve
tors. The re
onstru
tion ve
tors are determined by minimizing the average distortionde�ned by Eav = 1K KXi=1MSE(vi; v̂i); (8)where v̂i denotes vi that has been quantized into one of the re
onstru
tion ve
tors. In the LBGalgorithm, we begin with an initial estimate of the re
onstru
tion ve
tors si for 1� i � L. We then
lassify the K training ve
tors into L di�erent 
lusters 
orresponding to ea
h re
onstru
tion ve
tor.This 
an be done by 
omparing a training ve
tor with ea
h of the re
onstru
tion ve
tors and 
hoosing8



the ve
tor that results in the smallest distortion. A new re
onstru
tion ve
tor is determined from theve
tors in ea
h 
luster. This 
ompletes one iteration of the pro
edure, whi
h 
an be stopped when theaverage distortion Eav does not 
hange signi�
antly between two 
onse
utive iterations.By applying the LBG algorithm to all the possible image blo
ks in the mean image, ea
h generateddomain blo
k has the smallest average distortion with those image blo
ks in the same 
luster. Therefore,we 
onstru
t the domain pool by spe
ifying an L value to obtain a desired number of domain blo
ks.The LBG algorithm redu
es the redundan
ies of similar image blo
ks in the mean image. Hen
e thegenerated domain blo
ks have fewer redundan
ies than the domain blo
ks dire
tly obtained from themean image. Apparently, the 
onstru
ted domain pool is more eÆ
ient.However, the training pro
ess in the LBG algorithm requires iterations to obtain the minimumquantization error. The larger the 
odebook size, the bigger the iteration number. The LBG algorithmis employed in both the en
oder and the de
oder to generate the domain blo
ks. Therefore, it alsorequires the iteration pro
ess to generate the domain blo
ks in the de
oder. This is the limitation inapplying this method to the domain pool design for the proposed iteration-free s
heme. To solve thisproblem, we next propose the blo
k-averaging method by whi
h the domain blo
k is dire
tly generatedwithout iterations.4.2 Blo
k-Averaging MethodIn the mean image, the training ve
tors 
hosen from the neighboring blo
ks have a high similaritybe
ause most parts of the blo
ks are overlapped. They 
an be 
onsidered as the ve
tors of the same
luster in the LBG algorithm. Here the blo
k-averaging method is proposed based on the similar
on
ept of the LBG algorithm. We 
ompute the 
entroid of four blo
ks whi
h are adja
ent and partlyoverlapped in the mean image to generate a domain blo
k. More image blo
ks 
an be averaged toredu
e more redundan
ies among them. However, it is expe
ted that the 
orrelation between the fourneighboring blo
ks will be higher than that between more neighboring blo
ks. Therefore, we use onlyfour neighboring blo
ks in the blo
k-averaging method.Fig. 3(a) shows some sets of four neighboring blo
ks with a four-pixel sampling period in the meanimage. In this �gure, ea
h bla
k point denotes the top-left 
orner of an image blo
k and we use it torepresent a B�B image blo
k. Their relative positions are shown in Fig. 3(b). The pixel �di;j in the9



averaged blo
k �D 
an be 
al
ulated by�di;j = 14(d1i;j + d2i;j + d3i;j + d4i;j); 0 � i; j < B; (9)where d1i;j � d4i;j represents the (i; j)th pixel in the image bo
ks D1 � D4. Therefore, the 
al
ulatedpixel �di;j relates to the information of four adja
ent pixels in the original image blo
ks. The averagedblo
k repla
es the original four adja
ent image blo
ks and the redundan
ies in the four adja
ent imageblo
ks are thus redu
ed. With these averaged blo
ks, the 
onstru
ted domain pool is more eÆ
ient thanthat 
onsists of the domain blo
ks dire
tly sele
ted from the mean image.The domain blo
ks are uniformly sele
ted from the averaged blo
ks with a sampling period (T 0) inthe mean image. Let the number of domain blo
ks in the domain pool be ND, the sampling period inboth the horizontal and verti
al dire
tions 
an be 
al
ulated byT 0 = bM=B �BpND � 1 
; T 0 � 1: (10)Instead of using the training pro
ess in the LBG algorithm, here we only use the four-to-one averagingoperation to generate the domain blo
ks. Thus the required 
omputation 
omplexity is mu
h less thanthat in the LBG-based method and the high de
oding speed property in our iteration-free s
heme ispreserved.5 Computer SimulationIn 
omputer simulation, four 512�512 images (shown in Fig. 4(a)�(d)) with eight-bit grays
ale resolu-tion are used to test the proposed iteration-free fra
tal 
oding s
heme. The performan
e of the de
odedimage quality is evaluated by the peak signal-to-noise-ratio (PSNR) and the bit rate (the required bitsper pixel). In our simulation, an image is partitioned into range blo
ks with the single size, either 8�8or 4�4, or with two-level sizes (both 8�8 and 4�4). Therefore, a general form for the PSNR of thede
oded image is de�ned asPSNR = 10 log10 2552PN8i=1MSE(R8i ; R̂8i) +PN4i=1MSE(R4i ; R̂4i) dB; (11)where N8 and N4 are the total numbers of the 8�8 range blo
k R8 and the 4�4 range blo
k R4,respe
tively. As for the bit rate 
al
ulation, it will be given in the following subse
tions.10



For all the s
hemes used in our simulation, we set the threshold values Eth for the varian
e of 8�8and 4�4 range blo
ks to be 25. The size of the domain pool is represented by the number of domainblo
ks in it. There are four sizes used in our domain pool design: ND=16, 64, 256, and 1024. Onthe other hand, the sampling periods T 0 and T , for the blo
k-averaging method and the 
onventionaldomain pool design, are determined a

ording to Eqns. (2) and (10).5.1 Single Blo
k SizeFirst of all, the range blo
k with a single size (8�8 or 4�4) is 
onsidered. The length of the atta
hedheader Ih to the fra
tal 
ode for ea
h range blo
k is only one bit (i.e., Ih=1) be
ause it only denoteswhether or not the range blo
k is 
oded by the mean. Therefore, the bit rate 
an be 
al
ulated byB1 = (N� +Naf )(Ih + I�) +Naf (I� + I� + IPD)5122 bit=pixel; (12)for a single blo
k size, where I�; I�; I�, and IPD denote the required bits for the blo
k mean, 
ontrasts
aling, isometry, and the position of the domain pool, respe
tively. In addition, N� and Naf denotethe numbers of the blo
ks 
oded by the mean and aÆne transform, respe
tively.For an image partitioned by 8�8 range blo
ks, we measure every blo
k mean and obtain a 64�64mean image. Fig. 5(a) shows that the mean image is very similar to its original Lena image ex
eptits size. We therefore 
onstru
t the domain pools of di�erent sizes using the LBG-based and blo
k-averaging methods. There are 57�57 possible image blo
ks used as the training ve
tors in the theLBG-based method. We demonstrate an example of the 
onstru
ted domain pools that 
onsist ofND=256 8�8 domain blo
ks in Fig. 6(a) and (b) for the LBG-based and blo
k-averaging methods,respe
tively. As shown in Fig. 6(a), all the trained domain blo
ks are di�erent with ea
h other andhen
e the redundan
ies between them are redu
ed. On the other hand, the generated domain blo
ks inFig. 6(b) show a high 
orrelation with the original Lena image.We determine the 
oding performan
e with the 
ontra
tive aÆne transformation under the di�erentsizes for the domain pool. Fig. 7(a) shows the simulation results for the Lena image. The numbersshown in the �gure represent the di�erent sizes of the domain pool. The bit rates of all the s
hemeswhile using the same size of the domain pool are the same. A smaller size for the domain pool leads toa lower bit rate and vi
e versa. The LBG-based method has an ex
ellent performan
e by using smaller11



domain pools, while the blo
k-averaging method has the best performan
e when the size of domain poolis 1024.For the image partitioned by 4�4 range blo
ks, the 128�128 mean image for Lena is obtainedand shown in Fig. 5(b). We also 
onstru
t the domain pools of di�erent sizes using the LBG-basedand blo
k-averaging methods. The simulation results based on the same sizes for the domain pool areshown in Fig. 7(b). Two proposed design methods provide better performan
es than the 
onventionalfra
tal 
oding s
heme when the size of the domain pool is above 64. As the size of the domain poolin
reases, the improvement of the performan
e be
omes more obvious. The PSNR of the de
oded imagepartitioned by the 4�4 blo
k size is mu
h higher than that partitioned by the 8�8 blo
k size sin
e asmaller blo
k size leads to a smaller mat
hing error for the aÆne transformation. However, the bit ratein
reases signi�
antly be
ause the number of the 4�4 range blo
ks is four times the number of the 8�8range blo
ks.5.2 Two-Level Blo
k SizesFrom the results shown in Fig. 7(a) and (b), the 
hosen blo
k size greatly a�e
ts the bit rate and thePSNR of the 
oded image. In order to 
ompromise the bit rate and PSNR for the 
oded image, it isdesired to partition an image into the range blo
ks with two-level (parent 8�8 and 
hild 4�4) sizes.An image is �rst partitioned into parent range blo
ks and the 
oding pro
edures are the same as thatin Subse
tion 5.1. If the parent range blo
k is 
oded by the 
ontra
tive aÆne transformation and thedistortion between the original and 
oded range blo
ks, MSE(R8,R̂8), is greater than the thresholdvalue Eth=25, the parent range blo
k is split into four 
hild range blo
ks. The 
oding pro
edures forthe 
hild range blo
k are the same as that des
ribed in Subse
tion 5.1.Now, the bit rate is a�e
ted by the number of the partitioned parent and 
hild range blo
ks. Themore the parent range blo
ks in the 
oded image, the lower the �nal bit rate. If we 
hoose a larger size forthe domain pool in the parent level, more parent range blo
ks 
an satisfy the 
riterion MSE(R8,R̂8)�25.We thus 
hoose a large domain pool size (ND=1024) for the parent range blo
k su
h that the numberof the 
oded parent range blo
k 
an be in
reased. At the same time, the number of 
hild range blo
ksis de
reased to obtain a lower bit rate. Finally, the size of the 
hild domain pool is varied to examinethe PSNR performan
e of the proposed iteration-free s
heme under di�erent bit rates.12



To identify the di�erent partitions for the parent range blo
k, we atta
h a variable-length header tothe fra
tal 
ode. Table 1 shows the header and the bit allo
ation for the parent range blo
k R8. Weassign `0' as the header of the mean-
oded parent range blo
k. For the parent range blo
k 
oded by theaÆne transformation, `10' is the header. The header `11' represents that a parent range blo
k is splitinto four 
hild blo
ks. Then, the subheaders `0' and `1' represent the 
hild range blo
k 
oded by themean and the aÆne transformation, respe
tively. Therefore, the header has various lengths (one, two,and six bits) for di�erent parent range blo
ks. The bit rate 
an be 
al
ulated byB2 = N8� + 2N8at + 6N84 + (N8 +N4)I� + (N8at +N4at)(I� + I� + IPD)5122 bit=pixel; (13)where N8� ; N8at ; N84, and N4at denote the number of the parent range blo
ks 
oded by the mean, 
odedby aÆne transformation, partitioned into four 
hild range blo
ks, and the 
hild range blo
ks 
oded bythe aÆne transformation, respe
tively.Fig. 8(a) shows the simulation results of the Lena image based on the proposed iteration-free and
onventional fra
tal 
oding s
hemes. Using two-level blo
k sizes, the resultant bit rate and PSNRperforman
e of the proposed methods are within a moderate range. The LBG-based and the proposedblo
k-averaging methods signi�
antly improve the PSNR under the same bit rate (ex
ept for the 
asethat the domain pool size ND=16 in the LBG-based method). In order to verify that the proposedmethods also perform well for other images, the simulation results for three other images: Jetplane,Building, and Harbour (shown in Fig. 4(b)�(d)) are also given in Fig. 8(b)�(d). Apparently, theperforman
e of these images are greatly improved by using the domain pools that are designed basedon the LBG-based and the proposed blo
k-averaging methods. For example, the PSNR improvementof using the blo
k-averaging method to design the domain pool for the Jetplane image is more than1 dB (in average) 
ompared with both the 
onventional subsampling and neighboring methods at thesame bit rate. Based on these simulation results, we verify that the proposed methods design eÆ
ientdomain pools and thus a
hieve a good 
oding performan
e.Here we also list the 
omputation time on a SUN Ultra{1 workstation for the proposed iteration-free s
heme, whose domain pool is design based on the blo
k-averaging method, and two 
onventionalfra
tal 
oding s
hemes. The threshold value 
th for the 
onvergen
e 
riterion in the 
onventional fra
tal
oding s
heme is set by 0.005. Table 2 shows their CPU time (in se
onds, the de
oding program is13



not optimized) for de
oding the Lena image. The proposed iteration-free s
heme saves about 87% thede
oding time required in the 
onventional fra
tal 
oding s
heme. With the proposed domain pooldesign for the iteration-free fra
tal 
oding s
heme, we not only greatly speed up the de
oding pro
edurebut also improve the de
oded image quality.5.3 ComparisonAs shown in Figs. 7 and 8, the performan
es of the proposed iteration-free fra
tal 
oding s
hemewhose domain pool design is based on the LBG-based and blo
k-averaging methods are better than
onventional fra
tal 
oding s
hemes that require iterations. The proposed iteration-free s
heme performs
oding only in the spatial domain, i.e., it does not 
ombine other 
oding te
hniques su
h as the transform
oding and the subband 
oding. Therefore, here we 
ompare the bit rate and PSNR of the de
odedLena image between the proposed iteration-free s
heme and the existing fra
tal 
oding s
hemes thatalso perform 
oding in the spatial domain only.Fig. 9 shows the 
omparison between the proposed iteration-free s
heme and other 
ompetitivefra
tal 
oding s
hemes. Obviously, not only our iteration-free s
heme speeds up the de
oding pro
essbut also the proposed domain pool design based on the LBG-based and blo
k-averaging methods a
hievessuperior performan
es on the bit rate and PSNR for the de
oded image. We also make a 
omparisonwith the JPEG standard2 in Figure 10. The simulation results are obtained by varying the thresholdvalue Eth and the Q-fa
tor in the proposed and JPEG s
hemes, respe
tively. For the bit rate higher than0.33 bit/pixel, the performan
e of the proposed method is 
lose to that in JPEG standard. However,when the bit rate is smaller than 0.33 bit/pixel, the proposed method shows a signi�
ant improvement
ompared with the JPEG standard. Obviously, the proposed method is more suitable than JPEGstandard in the appli
ations of the very low bit rate 
oding.6 Con
lusionIn this paper, we employ the LBG-based and propose the blo
k-averaging methods to design eÆ
ientdomain pools for the iteration-free fra
tal image 
ode
. The redundan
ies between the generated domainblo
ks are redu
ed and thus the 
onstru
ted domain pool is more eÆ
ient than those in 
onventional2We use the \
jpeg" and \djepg" �les in the software pa
kage HIPS to exe
ute the 
ompression and de
ompression ofthe test image. 14



fra
tal s
hemes. Simulation results show that we make a signi�
ant improvement on both the de-
oding speed and the 
oding performan
e. The main drawba
k of the LBG-based method is that italso needs iterations in the training pro
ess. However, this limitation dose not appear in the blo
k-averaging method. Compared with the existing fra
tal 
oding s
hemes, the proposed iteration-frees
heme, utilizing the LBG-based or blo
k-averaging methods for the domain pool design, a
hieves asuperior performan
e. Therefore, based on the proposed domain pool design, the iteration-free fra
tals
heme shows its 
hara
teristi
s of high de
oding speed and ex
ellent image quality for fra
tal image
ompression. For the 
ases of very low bit rate 
oding, the performan
e for the proposed s
heme is alsobetter than that for JPEG standard.A
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Table and Figure Captions:
Table 1 Header and bit allo
ation for both 8�8 and 4�4 range blo
ks.Table 2 De
oding time (in se
onds) for de
oding the Lena image.Figure 1 The 
ow 
hart of the en
oder for the proposed iteration-free s
heme.Figure 2 The 
ow 
hart of the de
oder for the proposed iteration-free s
heme.Figure 3 (a) Some sets of the image blo
ks used to generate the domain blo
ks in the blo
k-averagingmethod, (b) The relative position for four neighboring and partly overlapped image blo
ksD1 � D4.Figure 4 The original images (512�512, 8 bit/pixel) used in the proposed iteration-free fra
tal 
odings
heme: (a) Lena, (b) Jetplane, (
) Building, and (d) Harbour.Figure 5 Two mean images of size (a) 64�64 and (b) 128�128 for the Lena image.Figure 6 The 
onstru
ted domain pools (
onsist of 256 domain blo
ks) from the mean image shownin Fig. 5(a) by using (a) the LBG-based method (b) the blo
k-averaging method.Figure 7 Coding results of the proposed iteration-free s
heme using the single-size design for therange blo
k: (a) 8�8, (b) 4�4.Figure 8 Coding results of the proposed iteration-free s
heme using two-level sizes for the range blo
k.(a) Lena, (b) Jetplane, (
) Building, (d) Harbour.Figure 9 Performan
e 
omparison of the Lena image for the proposed iteration-free s
heme and otherfra
tal 
oding s
hemes.Figure 10 Performan
e 
omparison of Lena image between the proposed iteration-free s
heme andJPEG image standard. 19



BIT ALLOCATIONBLOCK TYPE HEADER I� I�R I� IPDR8 CODED BY MEAN �R `0' 6R8 CODED BY AFFINE TRANSFORM `10' 3 6 3 6R8 SPLIT INTO FOUR R4 `11'R4 CODED BY MEAN �R `0' 6R4 CODED BY AFFINE TRANSFORM `1' 3 6 3 6Table 1. Header and bit allo
ation for both parent and 
hild range blo
ks.
DOMAIN POOL SIZE AVERAGEFRACTAL CODING SCHEME TIME16 64 256 1024CONVENTIONAL (SUBSAMPLING) 13.2 16.7 19.0 15.5 16.1CONVENTIONAL (NEIGHBORING) 13.4 12.2 14.7 20.9 15.3ITERATIONAL-FREE (BLOCK-AVERAGING) 1.9 2.0 1.9 2.0 1.95Table 2. De
oding time (in se
onds) for de
oding the Lena image.
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Figure 1: The 
ow 
hart of the en
oder for the proposed iteration-free 
oding s
heme.
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ow 
hart of the de
oder for the proposed iteration-free 
oding s
heme.
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D1: D2: D3: D4:

Sampling period

(a) (b)Figure 3: (a) Some sets of the image blo
ks used to generate the domain blo
ks in the blo
k-averagingmethod; (b) The relative position for four neighboring and partly overlapped image blo
ks D1 � D4.

.
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(a) (b)

(
) (d)Figure 4: The original images (512�512, 8 bit/pixel) used in the proposed iteration-free fra
tal 
odings
heme: (a) Lena, (b) Jetplane, (
) Building, and (d) Harbour.
24



(a) (b)Figure 5: Two mean images of size (a) 64�64 and (b) 128�128 for the Lena image.

(a) (b)Figure 6: The 
onstru
ted domain pools (
onsist of 256 domain blo
ks) from the mean image shown inFig. 5(a) by using (a) the LBG-based method, (b) the blo
k-averaging method.
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