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Abstract. We investigate some practical problems and propose their
solutions for the display of fractal images. The original sizes and coordi-
nates of fractal images are usually different, and they can be measured
only from the decoded results. This is a drawback, since the decoded
fractal image may not be shown with adequate size and may not locate
in a desired position. In this paper, we propose a hierarchical fixed-point-
seeking method that can directly determine the original size and the
coordinates of a fractal image from its iterated function system (IFS)
code. With a modification of the translation parameters in the IFS code,
we can resize and relocate the decoded image. On the other hand, we
discuss the quantization effects due to the finite word length in the hard-
ware implementation. Finally, a method for determining the iteration
number in the random iteration algorithm is also proposed. In computer
simulation, we demonstrate some examples to verify the proposed solu-
tions. © 2001 Society of Photo-Optical Instrumentation Engineers.
[DOI: 10.1117/1.1367345]
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1 Introduction

Fractal techniques for image coding have been greatly
veloped since their invention by Barnsley.1 The basic idea
originates from the observation that natural images suc
clouds, mountains, coastlines, plants, etc., have highself-
similarity. That is, these natural images have the prope
that their magnified subsets look like the whole set. Bar
ley found that a finite set of specific contractive transfo
functions~CATs! of an iterated function system~IFS! can
be used to generate a fractal image with a random itera
algorithm.1–3 The IFS can achieve a very high compress
ratio ~.10,000!, since only a few sets of parameters spe
fying the CATs are required. Its decoding algorithm
simple, but both the encoding and decoding processes
computation-intensive.

In the past decade, some methods4–6 have been propose
to solve the inverse problem of the encoding procedure,
some parallel algorithms7–9 have been provided to speed u
the decoding procedure. On the other hand, some op
architectures10–12 have been proposed and implemented
show the parallelism and high speed of which optics
capable. However, there have been no studies, to
knowledge, to investigate the scaling and relocation pr
lems for the fractal images in the encoding stage. The or
nal sizes of decoded fractal images are different, since
specification of the image size is not standardized in
encoding stage. Thus an image with an inadequate size
appear on the display. To normalize the image, we m
measure the size of the decoded image and then pro
with resizing. This process is troublesome and not practi
especially for hardware implementation. Therefore, o
should utilize some modification on the IFS codesbefore
Opt. Eng. 40(6) 941–951 (June 2001) 0091-3286/2001/$15.00
-

s

e

l

r

y
t
d

,

the fractal image is generated such that the decoded fra
images are of proper sizes.

In this paper, we propose ahierarchical fixed-point-
seeking~HFPS! method that can efficiently determine th
size of a fractal image from IFS codes. That is, the p
posed HFPS method can determine the original size
coordinates of fractal image, which are then used to mod
the original IFS code. This method originates from the B
nach fixed-point theorem1 and makes use of Pei’s paralle
algorithm.8 First of all, we calculate the fixed points of a
CATs and construct a contour that connects all of the po
without overlap. The sublevel CATs of each CAT can
derived by Pei’s parallel algorithm. By hierarchically ca
culating the fixed points of sublevel CATs, we can det
mine the final contour when no fixed points of the ne
level CATs contribute the extension to the contou
Therefore, original size of the decoded fractal image is
tained directly from its IFS code. Second, we employ t
coordinate transformation to modify the IFS code acco
ing to the original and the desired sizes. With the rand
iteration algorithm, the decoded fractal image can be g
erated with a desired size no matter what the original siz
in the encoding stage. Third, the quantization effects du
the finite word length used in the computing process of
random iteration algorithm are also investigated for ha
ware implementation. Finally, the iteration number in t
random iteration algorithm is discussed, so that we can
code a fractal image more efficiently.

The organization of this paper is as follows: Section
briefly reviews fractal image coding based on IFSs. In S
3, we first describe the proposed HFPS method that
automatically determine the coordinate and the size
941© 2001 Society of Photo-Optical Instrumentation Engineers
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Table 1 IFS codes for Sierpiński triangle, fern, castle, and snowflake.

Image W a b c d e f p

Sierpiński triangle 1 0.5 0 0 0.5 0 0 0.33

2 0.5 0 0 0.5 1 0 0.33

3 0.5 0 0 0.5 0.5 0.5 0.34

Fern 1 0 0 0 0.16 0 0 0.01

2 0.2 20.26 0.23 0.22 0 1.6 0.07

3 20.15 0.28 0.26 0.24 0 0.44 0.07

4 0.85 0.04 20.04 0.85 0 1.6 0.85

Castle 1 0.5 0 0 0.5 0 0 0.25

2 0.5 0 0 0.5 2 0 0.25

3 0.4 0 0 0.4 0 1 0.25

4 0.5 0 0 0.5 2 1 0.25

Snowflake 1 0.333 0 0 0.333 0.333 0 0.2

2 0.333 0 0 0.333 0 0.333 0.2

3 0.333 0 0 0.333 0.333 0.333 0.2

4 0.333 0 0 0.333 0.333 0.666 0.2

5 0.333 0 0 0.333 0.666 0.333 0.2
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original image. Then the IFS code is modified according
the measured information. Section 4 investigates the qu
tization effects due to the finite word length. Section
deals with the iteration number in the random iteration
gorithm for fractal image decoding. The experimental
sults are given in Sec. 6. Finally, Sec. 7 concludes
paper.

2 Iterated Function Systems

In this section we review the IFS and the random iterat
algorithm for fractal image decoding. The Banach fixe
point theorem and Pei’s parallel algorithm are also brie
reviewed, since both are used in the proposed HF
method.

2.1 Contractive Affine Transformation

IFS theory is an extension of classical geometry. It u
CATs to express relations between parts of an image.
general form of a CATW for a point located at the positio
~x,y! is expressed by2

WS FxyG D5AFxyG1b5Fa b

c dG FxyG1Fef G , ~1!

where the coefficientsa, b, c, d, e, and f are real numbers
and uad2bcu,1. These coefficients are used to descr
relationships of the rotations, scaling, and translations
tween the subimages and the whole image. Because fr
images have self-similarity, we may findN CATs, $Wi ,i
51,2, . . . ,N%, such that

F5 ø
i 51

N

Wi~F !, ~2!

whereF is a fractal image andWi(F) is a subimage given
neering, Vol. 40 No. 6, June 2001
-
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by the CATWi . Table 1 collects the IFS codes of the S
erpiński triangle, fern, castle, and snowflake.

2.2 Random Iteration Algorithm

There are two basic decoding algorithms for the IFS co
to decode a fractal image: the deterministic algorithm a
the random~probabilistic! iteration algorithm. The random
iteration algorithm is the most frequently used, since it u
the property of probability corresponding to each CAT a
hence the amount of computation can be reduced. Ass
that the IFS code is known. The random iteration algorith
is summarized as follows:

1. An arbitrary initial point (xt ,yt) is chosen.

2. For t50 to #itr, do steps 3 to 5.

3. One of the CATsWi , i 51, . . . ,N, is randomly se-
lected with probabilitypi .

4. Apply the transformationWi to the (xt ,yt) to obtain
(xt11 ,yt11).

5. Plot (xt ,yt).

In step 2, the symbol #itr indicates the iteration numb
of points. Let the iteration number be 9000. The decod
fractal images corresponding to the IFS codes in Tabl
are shown in Figs. 1~a! to 1~d!. Clearly, different fractal
images have different sizes and are located in different
sitions. On the other hand, because of their different c
tents, it is inefficient to choose the same iteration numbe
the random iteration algorithm. We give a solution to th
problem in Sec. 5.

2.3 Pei’s Parallel Decoding Algorithm

Pei proposed a parallel decoding algorithm8 that can deter-
mine the fixed point of each CAT to solve the problem
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Chang: Relocation, scaling, and quantization effects . . .
the transient points. The block diagram of Pei’s algorith
is shown in Fig. 2. In Pei’s method, the fixed pointgi of the
corresponding CATWi is calculated by

gi5Fxi

yi
G5~ I2A i !

21bi . ~3!

The fixed point of the CATWi must be in the subse
Wi(F). First we calculate the fixed points of all CAT
These fixed points serve as the initial points to avoid tr
sient behavior. In this figure, each CATWi is decomposed
as

Wi5 ø
j 51

N

Ti j , ~4!

where the sublevel CATTi j 5WiWjWi
21, and therefore,

Fig. 1 The fractal images decoded by the random iteration algo-
rithm: (a) Sierpiński triangle, (b) fern, (c) castle, and (d) snowflake.

Fig. 2 Pei’s parallel decoding architecture.
Ti j S FxyG D5A iA jA i
21FxyG2A iA jA i

21bi1A ibj1bi

5A i j FxyG1bi j . ~5!

Note thatTii is exactly equal toWi without requiring any
computation. Therefore, we need to determineN22N new
sublevel CATs. From the equation above, we obtain tha

A i j 5A iA jA i
21, bi j 52A iA jA i

21bi1A ibj1bi . ~6!

Since the fixed point of the CATWi can be calculated by
Eq. ~3!, the fixed pointgi j of the sublevel CATTi j can be
calculated in a similar way. The extension capability
Pei’s algorithm shows that each sublevel CAT can be f
ther decomposed into its sublevel CATs. By using Eq.~6!,
therefore, we can recursively extend the sublevel CATs
Ti j ,Ti jk , and then the sublevel CATs ofTi jk ,Ti jkl , and so
on. For each extended sublevel CAT, we can determine
corresponding fixed point.

In the above algorithm, the inverse matrixA21 may not
exist when some of the coefficients in matrixA are zero.
We then have to modify the coefficient zero to be a sm
positive number, for example, 0.00001. Then the inve
matrix in Eq.~6! exists, and Pei’s algorithm can work prop
erly.

2.4 Problem Description

Figure 1 shows the fractal images decoded by the rand
iteration algorithm. The original sizes of these images c
be obtained from the maximum and the minimum of thex
andy coordinates in all generated pixels. Table 2 shows
x andy ranges and the sizes of four decoded fractal imag
Sierpiński triangle, fern, castle, and snowflake, respe
tively. Their sizes are different, and thus the scaling pro
lem arises if we hope to show these images with the sa
size. For example, Fig. 3 shows the decoded results if
range of display is chosen as 333. A display with a fixed
size may result in a decoded fractal image that is too sm
for us to observe@Fig. 3~d!#, it may not locate it in a desir-
able position@Fig. 3~a!#, or only part of the image may be
presented@Figs. 3~b! and 3~c!#. Because we cannot dete
mine their sizes and their coordinates in advance, b
shifting and scaling of the decoded image are necessar
that we can obtain an image with a desired size and i
desired position. However, the postprocessing above
troublesome. First of all, we must measure the maxim
and minimum values of thex andy coordinates of all pix-

Table 2 The measured x and y ranges and the size of four fractal
images: Sierpiński triangle, fern, castle, and snowflake.

Image xmin xmax ymin ymax Size

Sierpiński triangle 0 2 0 1 231

Fern 22.18 2.66 0 10.0 4.8310

Castle 0 4 0 2 432

Snowflake 0 1 0 1 131
943Optical Engineering, Vol. 40 No. 6, June 2001



ions
led

el
s d
so

age
the
ot
ran
e-
er.

e
we
ac-
at

od

to
on

-

ts
e a
e

er-

ely

ge
e
ere-
ge
d
de:

n

sed

r

d
s

nt
ted
s

ne

Chang: Relocation, scaling, and quantization effects . . .
els. Then, both the scaling and the translation operat
must be applied to the entire image to obtain a resca
image in a desired position.

In the following sections, we first propose a nov
method that determines the image size and coordinate
rectly from the IFS code. The IFS code is then modified
that we can directly decode a desired size of fractal im
in a desired location. The quantization effects due to
finite word length are also investigated. Finally, it is n
reasonable to select the same iteration number in the
dom iteration algorithm for every image. A selection crit
rion for the iteration number is also provided in this pap

3 IFS Code Modification for Scaling and
Relocation

In this section, we propose ahierarchical fixed-point-
seeking ~HFPS! method to automatically determine th
original size and coordinates of a fractal image. Then
modify the translation parameters in the IFS code. The fr
tal image can thus be generated with a desired size and
desired location.

3.1 HFPS Method

Figure 4 shows a diagram of the proposed HFPS meth
First of all, the fixed pointgi for each CATWi is calcu-
lated. Then all fixed points are sequentially connected
obtain a contour. This contour serves as the level-one c
tour. For each CATWi , we then find its child transforma
tions Ti j

(2) and the corresponding fixed pointsgi j
(2) . Simi-

larly, we plot the level-two contour using the fixed poin
gi j

(2) and check whether the contour is extended. Onc
fixed pointgi j

(2) contributes the extension to the contour, w
set it as the new contour point that will be used to det

Fig. 3 The decoded fractal images within the same range
$(x,y)u0<x<3,0<y<3%: (a) Sierpiński triangle, (b) fern, (c) castle,
and (d) snowflake.
944 Optical Engineering, Vol. 40 No. 6, June 2001
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mine the fixed points at the next level~level three!. The
process above is executed hierarchically and recursiv
until the criterion that no fixed point at leveln11 makes an
extension of the contour at leveln is satisfied. We thus
obtain size and coordinate information on the fractal ima
from the x and y coordinates of four points located at th
north, south, west, and east corners of the contour. Th
fore the width and the length of the original fractal ima
are xmax2xmin and ymax2ymin , respectively. The propose
HFPS method is summarized as the following pseudoco

/* Pseudo code for hierarchical fixed-point seeking
method* /
Calculate fixed points for each CAT;
Plot level-one contour;
do $

For all of the transforms whose fixed points co-
tribute the extension of contour;
Calculate next-level transforms;
Calculate the corresponding fixed points;
Plot next-level contour;
%

while (the contour is extended)
Output xmin , xmax, ymin , and ymax

We also summarize the procedures of the propo
HFPS method as follows:

Step 1:The fixed points (xi ,yi) for all CATs Wi are cal-
culated by Eq.~3!. Then we plot the level-one contou
based on the fixed points.
Step 2:Apply Pei’s parallel algorithm to generateTi j

(2) for
each CATWi .
Step 3:For eachTi j

(2), determine the corresponding fixe
pointsgi j

(2) . Compare with the fixed points in the previou
level; check if the contour is extended or not.
Step 4:If the contour is extended, eliminate the fixed poi
at the previous level and replace with the newly calcula
fixed points; record theTi j

(2), so that we can employ Pei’
parallel algorithm to generate the sublevel CATTi jk

(3) . Oth-
erwise, stop extending the CAT at the next level, and pru
this branch with indexijk.

Fig. 4 Block diagram of the proposed HFPS method with detection
of contour extension.
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Chang: Relocation, scaling, and quantization effects . . .
Step 5:By steps similar to steps 2 to 4, perform the prop
gation ofTi jkl¯

(n) and the fixed-point calculation recursive
until no extension of thex andy ranges has occurred in th
current step.
Step 6:The points in the final contour are used to obtain
maximum and the minimum values of thex andy coordi-
nates, which specify the size and the coordinates of
fractal image.

3.2 IFS Code Modification

Once the coordinatesxmin and ymin have been determined
we shift the corresponding point to the origin of coord
nates in the original CAT. The method for transforming t
coordinates in the CAT has been given in Ref. 1. W
modify the parameterse and f in the IFS code as follows
Let (x8,y8) denote the original point~x,y! in the new coor-
dinate system. That is, (x8,y8)5u(x,y) denotes the new
coordinate of the point. LetW8(x8,y8) denote the same
transformation asW but expressed in the new coordina
system. Then the relationship between the two CATs in
two coordinate systems is expressed by1

W8~x8,y8!5~u+W+u21!~x8,y8!, ~7!

where the symbol+ denotes a transformation on the met
space. In our case,u(x,y)5(x2xmin ,y2ymin) and its in-
verse transform is u21(x8,y8)5(x81xmin ,y81ymin).
Therefore, the new CATW8 becomes

W8S Fx8
y8G D5AFx81xmin

y81ymin
G1b2Fxmin

ymin
G

5AFx8
y8G1~A2I !Fxmin

ymin
G1b5AFx8

y8G1b8. ~8!

Obviously, the parameters inA are not changed, and th
parameters inb should be modified as follows:

e85~a21!xmin1bymin1e,
~9!

f 85cxmin1~d21!ymin1 f .

Suppose that the range ofx and y determined from the
HFPS method is$(x,y)uxmin<x<xmax,ymin<y<ymax%. The
original size becomesP3Q, whereP5xmax2xmin and Q
5ymax2ymin . To make all of the coordinates in the decod
image positive, we shift bothxmin andymin to zero. Accord-
ing to Eq.~9!, the translation parameterse and f are modi-
fied to e8 and f 8, respectively.

If the desired image is of sizeM3N, then the magnifi-
cation or contraction ratio becomesR3R, where R
5min$M/P,N/Q%. The reason to choose the minimum
M /P and N/Q is that we have to magnify or contract th
original image consistently in both the vertical and horizo
tal directions, to keep the shape of the scaled image
same as the original one. To fit the desired size, the n
translation parametersen and f n in the IFS code are calcu
lated by
en5e8R,
~10!

f n5 f 8R.

The fractal image is then generated iteratively by the use
the modified IFS code$a, b, c, d, en , f n% without extra
postprocessing.

3.3 Computation Complexity

We have denoted the iteration number as #itr. Suppose
we perform the shifting and scaling operation for a gen
ated fractal image by the trivial algorithm. First of all, w
have to find the coordinates of four corner points. The
quired computations for each generated point in the im
include8(#itr21) comparisons. Then, for each point, fo
multiplications and four additions are required in the sc
ing and translation operations defined in Eq.~1!. Therefore,
the total computation amount is 4 #itr multiplications a
4 #itr additions. Considering the proposed method, on
other hand, the computations for different fractal imag
depend on the following factors:~1! the number of deter-
mined fixed points,Pf , ~2! the numberL of levels searched
in the HFPS method, and~3! the number of calculated sub
level CATs. To calculate a fixed point, as shown in Eq.~3!
requires seven multiplications/divisions and sev
additions/subtractions. Thus the total computations for
fixed points are 7Pf multiplications/divisions and 7Pf
additions/subtractions. To check the extension of the c
tour, eight comparisons are made for each fixed po
sought. Since the number of the fixed points sought is m
smaller than the iteration number, i.e.,Pf!#itr, the com-
parison number in the proposed method is much sma
than that in the trivial method, especially for a large nu
ber of iterations. If the HFPS method stops at levelL (L
>2), the number of calculated sublevel CATs isat most*

N2L21
2N2L22

, whereN is the number of original CATs.
As shown in Eq.~6!, it requires 27 multiplications/divisions
and 17 additions/subtractions to determine a sublevel C
Therefore, there are at most 27(N2L21

2N2L22
)

multiplications/divisions and 17(N2L21
2N2L22

) additions/
subtractions required in determining the sublevel CAT
The proposed method saves computation only when
total numbers of multiplications/divisions and of addition
subtractions are less than in the trivial method. That is,

7Pf127~N2L21
2N2L22

!,4 # itr

for multiplications/divisions,
~11!

7Pf117~N2L21
2N2L22

!,4 # itr

for additions/subtractions.

We can expect extra saving on computations when
searched levelsL are few.

*Only for the sublevel CATs whose fixed points contribute to the ext
sion of the contour is calculation of their corresponding sublevel CA
required.
945Optical Engineering, Vol. 40 No. 6, June 2001
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Chang: Relocation, scaling, and quantization effects . . .
4 Quantization Effects

In the previous section, the IFS code and the coordinate
the generated image points were real numbers. Howe
real numbers must be quantized by a finite word length
hardware implementations. Therefore we investigate
quantization effects on the decoded fractal images. Sup
that ak-bit word length is used for the IFS code and t
coordinates of the generated points. If we assume the im
to be of sizeM3M , the step size of quantization becom
M /(2k21). The image resolution increases if we choos
higher k value. In Sec. 3, we found that the translati
parameterse andf dominate the image scale. If the origin
size of the fractal image is small,e andf are also small, and
vice versa. The quantization effects for largee andf will be
more severe than those for smalle and f. Since the fractal
image is generated iteratively~point by point!, the propa-
gation problem of the quantization error occurs. If the wo
length for denoting the IFS code or the calculatedx andy
coordinates is not large enough, the quantization erro
previously generated points will propagate to the curr
and following points. The decoded fractal image is co
posed of fewer points than in the ideal case. Therefore
important to provide a large enough word length in ha
ware implementations. In our experiments, we examine
decoding results for different word lengths and determ
what word length is enough to obtain a visually accepta
result.

Since the decoded image is binary, we also calculate
Hamming distance between the ideal image and the
coded images in the presence of quantization effects.
the ideal fern image be within the rangexmin<x<xmax and
ymin<y<ymax. In order to calculate the Hamming distanc
we use the proposed scaling method to decode the imag
the desired sizeM3M . Since the size of the decoded im
age has to be fixed before the quantization, we only c
sider the error image with the same size as the ideal im
In a binary image, if a pixel is black, we assign it the val
0; if white, 1. The Hamming distanceH between two bi-
nary imagesF1 andF2 is defined as

H5 (
0< i , j ,M

uF1~ i , j !2F2~ i , j !u, ~12!

whereF( i , j ) denotes the (i , j )’th pixel value in the image
F. In our experiments, we measure the normalized perc
age errore% of the Hamming distance between the d
torted and the ideal images, which is defined as

e%5
H

M2 3100%. ~13!

5 Iteration Number in Decoding

The random iteration algorithm does not specify an ite
tion number. Therefore, it must have a convergence cr
rion to decide when the decoding process should stop
shown in the section above, the generated points may o
lap because of the quantization effects on the decoded
age in practical implementations. If we choose a small
eration number, the decoded fractal image is sparse in
content. Otherwise, the decoding will be inefficient, sin
946 Optical Engineering, Vol. 40 No. 6, June 2001
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many computed points will overlap. In order to efficient
decode a fractal image, we should chose an adequate i
tion number or find a convergence criterion for a giv
image size.

The convergence criterion has been clearly defined
the deterministic decoding algorithm as follow. Let th
n’ th iterated image be denoted asF (n). The error between
then’ th and (n21)’th decoded images can be represen
by the Hamming distance defined in Eq.~12!:

E~n!5 (
0< i , j ,M

uF ~n!~ i , j !2F ~n21!~ i , j !u, ~14!

whereF (n)( i , j ) and F (n21)( i , j ) denote the (i , j )’th pixel
values in then’ th and (n21)’th decoded images, respec
tively. If the ratio

g5
uE~n!2E~n21!u

E~n21!
~15!

is less than a threshold valueg th , the decoded image con
verges and the iteration process terminates. Otherwise
iteration continues.

The random iteration algorithm does not specify a co
vergence criterion to terminate the iteration process. The
fore, we propose an efficient method to terminate the ite
tion process rather than set an iteration number accord
to the required resolution or our experience. In the rand
iteration algorithm, the reconstructed image is genera
point by point. We count the overlap points during the
eration process. Suppose that the image size and resol
have been chosen. We first monitor each point and co
the number of overlap points,O(n), in the n’ th iteration.
The overlap points are the points repeatedly generated
ing the iteration process. LetP(n) be the number of pixels
exactly contributing to the fractal image. If the ratio

h~n!5
O~n!

P~n!
~16!

is greater than a thresholdh th , the iteration stops. Other
wise, it continues.

The iteration numbers for different fractal images w
depend on the desired scale and resolution of the fra
images. A sparse fractal image such as the snowflake
require only 3000 iterations. On the other hand, the ca
requires more than 9000 iterations, since it is much den
This difference can be inferred from their fractal code
First of all, we calculate the absolute value of the determ
nant,r i5uad2bcu, of the matrixA in each CATWi . The
physical meaning ofr i is the weight corresponding to th
entire fractal image. These absolute values are then s
marized as the contractivity sumr for comparison. That is,

r5(
i 51

N

r i . ~17!

Theoretically, a larger contractivityr should correspond to
a larger area for the fractal image. However, some sub
ages may overlap when they are chosen in the enco
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Chang: Relocation, scaling, and quantization effects . . .
stage.1 Four contractivity sums corresponding to four se
of fractal codes are listed in Table 3. As we can expect,
required iteration number for the fern and castle image
more than for others, since those two images have la
contractivity sums. However, in the encoding stage of
fern image, the two subimages corresponding toW1 and
W2 partially overlap1 that for W4 . Therefore, the effective
contractivity sum of the fern image should be smaller th

Table 3 The calculated contractivity sums for four fractal images:
Sierpiński triangle, fern, castle, and snowflake.

Image r

Sierpiński triangle 0.75

Fern 0.93

Castle 0.91

Snowflake 0.55
r

that of the castle image. Thus the castle image should
quire the largest iteration number among the four frac
images.

6 Simulation Results and Discussion

The four IFS codes shown in Table 1 were used to test
proposed methods. First of all, the proposed HFPS met
was employed to determine the original sizes and coo
nates of fractal images from their IFS codes only. The c
tours determined for four fractal images are shown in F
5. For different CATs, their fixed points are represented
different symbols. The level-one contour is plotted by
dotted line, and the level-two contour is plotted by a dash
line. In Figs. 5~a!, 5~c!, and 5~d!, the extension of the con
tour stops at level one. That is, the fixed points of the lev
two CATs do not contribute to the extension of the conto
As shown in Fig. 5~b!, the extension of the contour for th
fern image stops at level three. The reason is that, in
encoding stage, the fixed points are usually selected at
Fig. 5 The contours determined by the proposed HFPS method: (a) Sierpiński triangle, (b) fern, (c)
castle, and (d) snowflake.
947Optical Engineering, Vol. 40 No. 6, June 2001



ly a
ws
els
d is

os
ed

tal
ifie

ive
ale
-
se

ds
Ts
se
he

ght
e
rs
the
s in

rs
in
ints,

in

Chang: Relocation, scaling, and quantization effects . . .
corners of the image for easy encoding. Therefore, on
few levels are utilized in our HFPS method. Table 4 sho
that only a few points are calculated on the different lev
for the four fractal images. The proposed HFPS metho
efficient because of its low computation load. Thex andy
ranges obtained from Fig. 5 are almost the same as th
shown in Table 2, which are obtained from the decod
images.

We modify the translation parameterse and f to e8 and
f 8, and then toen and f n . Table 5 shows the modified
parameters in the corresponding CATs for the four frac
images. The generated fern image based on the mod
coefficientse8 and f 8 is shown in Fig. 6, in which we can
see that the coordinates of the fern image are all posit
On the other hand, in Fig. 7 the decoded images are sc
to the same size, 5123512. Therefore, we can in fact res
cale and relocate the fractal images by using the propo
HFPS method and the modification of IFS code.

Figure 8 shows the computations of the trivial metho
and the proposed method under different numbers of CA
~N! and searched levels. Three iteration numbers are u
in the trivial methods: 9000, 90,000, and 900,000. T

Table 4 The number of the fixed points sought for four fractal im-
ages.

Image

No of points sought

Level 1 Level 2 Level 3 Level 4 Total

Sierpiński triangle 3 9 0 0 12

Fern 4 16 8 0 28

Castle 4 26 0 0 20

Snowflake 5 25 0 0 30
948 Optical Engineering, Vol. 40 No. 6, June 2001
e

d

.
d

d

d

number of computations for comparisons is about ei
times the number of iterations. In addition, th
multiplication/division and addition/subtraction numbe
are proportional to the number of iterations and are
same. As shown in Table 4, the number of comparison
the proposed method is at most 83305240, which is much
less than 839000572,000. On the other hand, the numbe
of multiplications/divisions and additions/subtractions
the proposed method depend on the number of fixed po
the number of sublevel CATs, and the searched levels

Fig. 6 The shifted fern image decoded with the modified IFS code
$a,b,c,d,e8,f8%.
Table 5 The modified translation parameters in IFS code. Here e8 and f8 are calculated after the
change of coordinates, and en and fn are calculated for resizing the original fractal image. Note that
the magnification/contraction ratio R is determined from the desired image size 5123512.

Image W e8 f8 R en fn

Sierpiński triangle 1
2
3

0
1
0.5

0
0
0.5

J 256 H 0
256
128

0
0

128

Fern 1
2
3
4

2.178
1.744
2.507
0.327

0
1.099

20.127
1.687

J 51.2 H 139.162
89.293

128.358
16.742

0
56.248

26.492
86.385

Castle 1
2
3
4

0
2
0
2

0
0
1
1
J 128 H 0

256
0

256

0
0

128
128

Snowflake 1
2
3
4
5

0.333
0
0.333
0.333
0.666

0
0.333
0.333
0.666
0.333

6 512 5
170.496

0
170.496
170.496
340.992

0
170.496
170.496
340.992
170.496
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Chang: Relocation, scaling, and quantization effects . . .
the HFPS method. In the proposed HFPS method, only
sublevel CATs of the CATs related to the fixed points th
contribute to the extension of the contour are calculat
Generally, only parts of the sublevel CATs are determin
so the actual number of computations should be much
than given by the curves in Fig. 8. Since the number
determined fixed points is much smaller than the iterat
number, the number of comparisons in the propo
method is negligible and is not shown in the figure. T
curves shown in fact are upper bounds on the number
computations for different cases. Furthermore, the searc

Fig. 7 The fractal images decoded by the use of the modified coef-
ficients en and fn shown in Table 5. The four images are of the
desired size 5123512, and their shapes are identical to the original
ones.

Fig. 8 Comparison of the computations in the trivial method and the
proposed method under different numbers of CATs (N) and
searched levels.
s

f
d

levels in the HFPS method for most of the images are u
ally fewer than four. Therefore, our method is more ef
cient than trivial methods, especially when we need to g
erate high-resolution fractal images~where the iteration
number will be much greater than 90,000!.

The fern image is used to examine the quantization
fects on the decoded results. Figures 9~a! to 9~d! show the
decoding results for word lengths of 9, 8, 7, and 6 b
respectively. It is clear that the decoded image quality

Fig. 10 The Hamming distance (presented as a percentage error)
between the ideal and quantized images.

Fig. 9 The decoded fractal fern images corresponding to the quan-
tization effects under different word lengths: (a) 9 bits, (b) 8 bits, (c)
7 bits, and (d) 6 bits.
949Optical Engineering, Vol. 40 No. 6, June 2001
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Table 6 Required iteration number at different threshold values h th for various fractal images.

Image

Iteration number

h th50.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Sierpiński triangle 5056 10227 14650 19914 24498 28704 32532 37145 41244 45040

Fern 4536 11591 17690 24542 31709 37144 48789 55383 66033 75856

Castle 12650 36790 60592 88392 119417 NA NA NA NA NA

Snowflake 2326 4695 6538 8459 10517 12751 14252 16168 18751 20252
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visually acceptable when the word length is 9 or 8. If t
word length is less then 8, the quantization effects are
vere and the image shape clearly changes. In Fig. 9~d! the
quantization effects are especially severe, since the dec
points can only appear in some fixed positions.

Figure 10 gives a comparison of different word length
The reconstructed image size is 5123512, and the iteration
number is set as 15,000. Figure 10 shows that to effectiv
eliminate the quantization error, a bit number more than
is required in practical implementation, so that the dist
tion can be neglected.

Considering the convergence criterion for the rand
iteration algorithm, we employ Eq.~16! to determine the
iteration number under different threshold valuesh th50.1
to 1.0 for four test images. Table 6 shows the iterat
number required for different threshold valuesh th and dif-
ferent fractal images. For a given threshold valueh th , the
iteration number depends on the image. The iteration n
ber for the castle image becomes unavailable when
threshold value is greater than 0.5. Thus we refrain fr
measuring it and represent it by ‘‘not available’’~NA!. The
simulation results are reasonable, since the contents an
sizes of different fractal image are also different. Thus
iteration number in conventional decoding algorithms
also image-dependent. For fractal images with a large c
tractivity sum ~for example, the fern and castle!, the re-
quired iteration number is also large. On the other han
small contractivity sum will correspond to a small iteratio
number. The simulation results thus verify our stateme
in Sec. 5.

7 Conclusion

In this paper we have dealt with the problem of displayi
fractal images whose original sizes and coordinates are
ferent. We propose a novel HFPS method to determine
original size and the coordinates of the fractal image fr
its IFS code. Two parameters of the IFS code,e and f, are
then modified according to the original size and the des
size by the use of a coordinate transformation. Theref
the image can be decoded with a desired size and show
a desired location. Comparisons of computations betw
the proposed method and the trivial methods are provi
to verify the efficiency of our method.

We also investigate the quantization effects of the fin
word length in hardware implementations. The percent
Hamming distance is used to measure the distortion
tween the ideal and quantized images. The simulation
sults suggest the required number of quantization bits fo
real implementation, such that we can neglect the quant
tion error. Finally, we propose a convergence criterion t
950 Optical Engineering, Vol. 40 No. 6, June 2001
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can automatically terminate the iteration process in the r
dom iteration algorithm. A fractal image with a large co
tractivity sum requires a large iteration number, and v
versa.

The proposed HFPS method can be extended to th
dimensional fractals.

A fractal image can be seen as a single object in
image synthesis framework. We can integrate differ
fractal images into a single image frame. If their origin
sizes and coordinates are different, it is necessary to res
and relocate the original fractal images so that we can
them together. In our future work, we will focus on pe
forming arbitrary geometric transformations of fractal im
ages such as rotation, skewing, reflection, and so on. Th
transformations of original fractal images can be perform
by modifying the IFS code in advance without postproce
ing the decoded results.
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