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1 Introduction the fractal image is generated such that the decoded fractal
Fractal techniques for image coding have been greatly de-IMmages are of proper sizes. , o ,
veloped since their invention by Barnslithe basic idea In this paper, we propose hierarchical fixed-point-

originates from the observation that natural images such asS€€king(HFPS method that can efficiently determine the
clouds, mountains, coastlines, plants, etc., have bigf size of a fractal image from IFS qodes. Thgt. is, th.e pro-
similarity. That is, these natural images have the property Posed HFPS method can determine the original size and
that their magnified subsets look like the whole set. Barns- coordinates of fractal image, which are then used to modify
ley found that a finite set of specific contractive transform the original IFS code. This method originates from the Ba-
functions (CATS) of an iterated function systeiFS) can nach_ﬂxegl-p_omt theorehand makes use of Pei's parallel
be used to generate a fractal image with a random iterationalgorithm? First of all, we calculate the fixed points of all
algorithm®~ The IFS can achieve a very high compression CATs and construct a contour that connects all of the points
ratio (>10,000, since only a few sets of parameters speci- Without overlap. The sublevel CATs of each CAT can be
fying the CATs are required. Its decoding algorithm is derived by Pei's parallel algorithm. By hierarchically cal-
simple, but both the encoding and decoding processes areculating the fixed points of sublevel CATs, we can deter-
computation-intensive. mine the final contour when no fixed points of the next-
In the past decade, some methbdsave been proposed level CATs contribute the extension to the contour.
to solve the inverse problem of the encoding procedure, andTherefore, original size of the decoded fractal image is ob-
some parallel algorithnis® have been provided to speed up tained directly from its IFS code. Second, we employ the
the decoding procedure. On the other hand, some opticalcoordinate transformation to modify the IFS code accord-
architecturerg—12 have been proposed and implemented to ing to the original and the desired sizes. With the random
show the parallelism and high speed of which optics is iteration algorithm, the decoded fractal image can be gen-
capable. However, there have been no studies, to ourerated with a desired size no matter what the original size is
knowledge, to investigate the scaling and relocation prob- in the encoding stage. Third, the quantization effects due to
lems for the fractal images in the encoding stage. The origi- the finite word length used in the computing process of the
nal sizes of decoded fractal images are different, since therandom iteration algorithm are also investigated for hard-
specification of the image size is not standardized in the ware implementation. Finally, the iteration number in the
encoding stage. Thus an image with an inadequate size mayandom iteration algorithm is discussed, so that we can de-
appear on the display. To normalize the image, we must code a fractal image more efficiently.
measure the size of the decoded image and then proceed The organization of this paper is as follows: Section 2
with resizing. This process is troublesome and not practical, briefly reviews fractal image coding based on IFSs. In Sec.
especially for hardware implementation. Therefore, one 3, we first describe the proposed HFPS method that can
should utilize some modification on the IFS code=fore automatically determine the coordinate and the size of
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Table 1 IFS codes for Sierpinski triangle, fern, castle, and snowflake.

Image w a b c d e f p
Sierpinski triangle 1 0.5 0 0 0.5 0 0 0.33
2 0.5 0 0 0.5 1 0 0.33
3 0.5 0 0 0.5 0.5 0.5 0.34
Fern 1 0 0 0 0.16 0 0 0.01
2 0.2 —0.26 0.23 0.22 0 1.6 0.07
3 -0.15 0.28 0.26 0.24 0 0.44 0.07
4 0.85 0.04 —0.04 0.85 0 1.6 0.85
Castle 1 0.5 0 0 0.5 0 0 0.25
2 0.5 0 0 0.5 2 0 0.25
3 0.4 0 0 0.4 0 1 0.25
4 0.5 0 0 0.5 2 1 0.25
Snowflake 1 0.333 0 0 0.333 0.333 0 0.2
2 0.333 0 0 0.333 0 0.333 0.2
3 0.333 0 0 0.333 0.333 0.333 0.2
4 0.333 0 0 0.333 0.333 0.666 0.2
5 0.333 0 0 0.333 0.666 0.333 0.2

original image. Then the IFS code is modified according to by the CATW,. Table 1 collects the IFS codes of the Si-
the measured information. Section 4 investigates the quan-erpirski triangle, fern, castle, and snowflake.

tization effects due to the finite word length. Section 5

deals with the iteration number in the random iteration al-

gorithm for fractal image decoding. The experimental re- 2.2 Random lIteration Algorithm

sults are given in Sec. 6. Finally, Sec. 7 concludes this There are two basic decoding algorithms for the IFS code

paper. to decode a fractal image: the deterministic algorithm and
the random(probabilistig iteration algorithm. The random
2 Iterated Function Systems iteration algorithm is the most frequently used, since it uses

In this section we review the IFS and the random iteration the property of probability corresponding to each CAT and
algorithm for fractal image decoding. The Banach fixed- hence the amount of computation can be reduced. Assume

point theorem and Pei’s parallel algorithm are also briefly that the IFS code is known. The random iteration algorithm

reviewed, since both are used in the proposed HFPSIS Summarized as follows:

method. 1. An arbitrary initial point & ,y,) is chosen.

2. Fort=0 to #itr, do steps 3 to 5.

3. One of the CAT®,, i=1,... N, is randomly se-
lected with probabilityp; .

2.1 Contractive Affine Transformation

IFS theory is an extension of classical geometry. It uses
CATs to express relations between parts of an image. The

general form of a CATW for a point located at the position 4. Apply the transformatiolW; to the (x,y;) to obtain
(x,y) is expressed By (Xe+1,Ye+1)-
5. Plot (X;,Y;)-
X X a bi[x] [e
WH I =AY o= glly el 1) In step 2, the symbol #itr indicates the iteration number

of points. Let the iteration number be 9000. The decoded

where the coefficienta, b, ¢, d, e andf are real numbers fractal images corresponding to the IFS codes in Table 1

and |ad—bc|<1. These coefficients are used to describe &€ Shown in Figs. @ to 1(d). Clearly, different fractal

relationships of the rotations, scaling, and translations be-'Mages have different sizes and are located in different po-

tween the subimages and the whole image. Because fracta Itr;(t)nsi't P?nthfﬁ ?tﬂte{ har?d, betc;]ausen?f itth?lrtidf?]rermac??r;
images have self-similarity, we may fild CATs, {W, ,i ents, 1S inefiicient to cnoose the same fleration numbe

- the random iteration algorithm. We give a solution to this
=1.2,... N}, such that problem in Sec. 5.

N
F=UW(F), (2)
i=1

2.3 Pei’s Parallel Decoding Algorithm

Pei proposed a parallel decoding algorifhtimat can deter-
whereF is a fractal image an@lV;(F) is a subimage given  mine the fixed point of each CAT to solve the problem of
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Fig. 1 The fractal images decoded by the random iteration algo-
rithm: (a) Sierpinski triangle, (b) fern, (c) castle, and (d) snowflake.

the transient points. The block diagram of Pei's algorithm
is shown in Fig. 2. In Pei’'s method, the fixed poitof the
corresponding CAW, is calculated by

Xi _
gi:[y}:(l_Ai) by 3

The fixed point of the CAW, must be in the subset
W;(F). First we calculate the fixed points of all CATs.
These fixed points serve as the initial points to avoid tran-
sient behavior. In this figure, each CAN, is decomposed
as

(4)

where the sublevel CAT;; =WinWf1, and therefore,

& Ty Ty « o« o« Tn
& | Ty Ty » » Ty
g —| Tu Tw* Ty Wy (F)

Fig. 2 Pei's parallel decoding architecture.

Table 2 The measured x and y ranges and the size of four fractal
images: Sierpinski triangle, fern, castle, and snowflake.

Image Xmin Xmax Ymin Ymax Size
Sierpinski triangle 0 2 0 1 2x1
Fern —2.18 2.66 0 10.0 4.8%x10
Castle 0 4 0 2 4x2
Snowflake 0 1 0 1 1x1

X -1 X _1
Tij y :AIAJAl y _AIAJAl b|+A|bJ+b|
X
= A” y + b” . (5)

Note thatT;; is exactly equal toN; without requiring any
computation. Therefore, we need to determiife- N new
sublevel CATs. From the equation above, we obtain that

©6)

Since the fixed point of the CAW; can be calculated by
Eq. (3), the fixed pointg;; of the sublevel CATT;; can be
calculated in a similar way. The extension capability of
Pei’'s algorithm shows that each sublevel CAT can be fur-
ther decomposed into its sublevel CATs. By using &),
therefore, we can recursively extend the sublevel CATs of
Tij  Tijc» and then the sublevel CATs @i ,Tjj , and so

on. For each extended sublevel CAT, we can determine the
corresponding fixed point.

In the above algorithm, the inverse matAx * may not
exist when some of the coefficients in matéxare zero.
We then have to modify the coefficient zero to be a small
positive number, for example, 0.00001. Then the inverse
matrix in Eq.(6) exists, and Pei’s algorithm can work prop-
erly.

A=AAATY  bj=—AAA D +AD+b;.

2.4 Problem Description

Figure 1 shows the fractal images decoded by the random
iteration algorithm. The original sizes of these images can
be obtained from the maximum and the minimum of xhe
andy coordinates in all generated pixels. Table 2 shows the
x andy ranges and the sizes of four decoded fractal images:
Sierpirski triangle, fern, castle, and snowflake, respec-
tively. Their sizes are different, and thus the scaling prob-
lem arises if we hope to show these images with the same
size. For example, Fig. 3 shows the decoded results if the
range of display is chosen as<3. A display with a fixed
size may result in a decoded fractal image that is too small
for us to observéFig. 3(d)], it may not locate it in a desir-
able positionFig. 3(@)], or only part of the image may be
presentedFigs. 3b) and 3c)]. Because we cannot deter-
mine their sizes and their coordinates in advance, both
shifting and scaling of the decoded image are necessary so
that we can obtain an image with a desired size and in a
desired position. However, the postprocessing above is
troublesome. First of all, we must measure the maximum
and minimum values of thg andy coordinates of all pix-
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Fig. 3 The decoded fractal images within the same range
{(x,¥)|0<x=<3,0<y=<3}: (a) Sierpinski triangle, (b) fern, (c) castle,
and (d) snowflake.
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Fig. 4 Block diagram of the proposed HFPS method with detection
of contour extension.

mine the fixed points at the next levéevel three. The
process above is executed hierarchically and recursively
until the criterion that no fixed point at levek-1 makes an
extension of the contour at level is satisfied. We thus
obtain size and coordinate information on the fractal image
from the x andy coordinates of four points located at the
north, south, west, and east corners of the contour. There-
fore the width and the length of the original fractal image

els. Then, both the scaling and the translation operationsare Xya,—Xmin @Nd Ymax—Ymin, respectively. The proposed
must be applied to the entire image to obtain a rescaledHFPS method is summarized as the following pseudocode:

image in a desired position.
In the following sections, we first propose a novel

/* Pseudo code for hierarchical fixed-point seeking

method that determines the image size and coordinates difnethod™/ )

rectly from the IFS code. The IFS code is then modified so Calculate fixed points for each CAT
that we can directly decode a desired size of fractal image Plot level-one contoyr

in a desired location. The quantization effects due to the do

finite word length are also investigated. Finally, it is not

reasonable to select the same iteration number in the ran-

dom iteration algorithm for every image. A selection crite-
rion for the iteration number is also provided in this paper.

3 IFS Code Modification for Scaling and
Relocation

In this section, we propose hierarchical fixed-point-
seeking (HFPS method to automatically determine the

For all of the transforms whose fixed points eon
tribute the extension of contour

Calculate next-level transforms

Calculate the corresponding fixed points

Plot next-level contoyr

while (the contour is extended)
OUtpm Xnins Xmax: Ymin» and Ymax

We also summarize the procedures of the proposed

original size and coordinates of a fractal image. Then we HEPS method as follows:

modify the translation parameters in the IFS code. The frac-

tal image can thus be generated with a desired size and at &tep 1:The fixed points X;,y;) for all CATs W; are cal-

desired location.

3.1 HFPS Method

culated by Eq.(3). Then we plot the level-one contour
based on the fixed points.
Step 2:Apply Pei’s parallel algorithm to generafg?) for

Figure 4 shows a diagram of the proposed HFPS method.each CATW;.

First of all, the fixed pointg; for each CATW; is calcu-

lated. Then all fixed points are sequentially connected to

Step 3:For eachTi(jZ), determine the corresponding fixed

pointsg{?). Compare with the fixed points in the previous

obtain a contour. This contour serves as the level-one CON-level: check if the contour is extended or not.

tour. For each CAW;, we then find its child transforma-
tions T?) and the corresponding fixed poing$®. Simi-
larly, we plot the level-two contour using the fixed points
(2)
9ij
fixed pointg{?’ contributes the extension to the contour, we

Step 4:If the contour is extended, eliminate the fixed point
at the previous level and replace with the newly calculated

fixed points; record thd@?), so that we can employ Pei's

and check whether the contour is extended. Once apara||e| a|gorithm to generate the sublevel CAIT;k) . Oth-

erwise, stop extending the CAT at the next level, and prune

set it as the new contour point that will be used to deter- this branch with indexk.
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Step 5:By steps similar to steps 2 to 4, perform the propa- e =e'R,

gation ofTi(j”lQ,,,, and the fixed-point calculation recursively (10)

until no extension of the andy ranges has occurred inthe  f =f'R.

current step.

Step 6:The points in the final contour are used to obtain the The fractal image is then generated iteratively by the use of

maximum and the minimum values of tieandy coordi- the modified IFS codda, b, c, d, e,, f,} without extra
nates, which specify the size and the coordinates of the postprocessing.

fractal image.

3.2 IFS Code Maodification 3.3 Computation Comp le).(lty .
. _ We have denoted the iteration number as #itr. Suppose that
Once the coordinatesy, andy,, have been determined, e perform the shifting and scaling operation for a gener-

we shift the corresponding point to the origin of coordi- ated fractal image by the trivial algorithm. First of all, we
nates in the original CAT. The method for transforming the paye to find the coordinates of four corner points. The re-

coordinates in the CAT has been given in Ref. 1. We qyired computations for each generated point in the image
modify the parameters andf in the IFS code as follows ; ; ; ;
: p : WS- include8(#itr— 1) comparisons. Then, for each point, four

Let (x,y") denote the original poir(i.y) in the new coor-  yjipjications and four additions are required in the scal-
dinate system. That isx(,y’)=6(x,y) denotes the new  ing and translation operations defined in EY. Therefore,
coordinate of the point. LeW’(x’,y") denote the same  the total computation amount is 4 #itr multiplications and

transformation adV but expressed in the new coordinate 4 #itr additions. Considering the proposed method, on the
system. Then the relationship between the two CATs in the gther hand, the computations for different fractal images

two coordinate systems is expressed by depend on the following factorgl) the number of deter-
. mined fixed pointsP;, (2) the numbeL of levels searched
W/ (X", y")=(0-We ™ 7)(X",y"), (7) in the HFPS method, an@) the number of calculated sub-

level CATs. To calculate a fixed point, as shown in E).
where the symboi denotes a transformation on the metric requires seven multiplications/divisions and seven

space. In our cased(X,y) = (X—Xmin,Y—Ymin) @nd its in- additions/subtractions. Thus the total computations for the
verse transform is 8 X(X",y")=(X"+ XminsY + Yimin)- fixed points are P; multiplications/divisions and P
Therefore, the new CAW’' becomes additions/subtractions. To check the extension of the con-

tour, eight comparisons are made for each fixed point

/ / _ _ sought. Since the number of the fixed points sought is much
X X"+ Xmin Xmin : ) . .
Wl = iy +b—| smaller than the iteration number, i.@;<#itr, the com-
y Y T Ymin Ymin parison number in the proposed method is much smaller
X' Xmin X’ ) than that in the trivial method, especially for a large num-
=Aly +(A-1) Yo +b=A y' +b'. (8 ber of iterations. If the HFPS method stops at lekdlL

=2), the number of calculated sublevel CATsaismost
L-1 L—-2 . A
Obviously, the parameters i are not changed, and the N? "—N? °, whereN is the number of original CATSs.

parameters i should be modified as follows: As shown in Eq(6), it requires 27 multiplications/divisions
and 17 additions/subtractions to determine a sublevel CAT.
e'=(a—1)Xpin+ byminte, Therefore, there are at most 2" —N2° 9
9 multiplications/divisions and 1% '—N2"°) additions/
f' =cXminT (d=21)Ymintf. subtractions required in determining the sublevel CATSs.

The proposed method saves computation only when the
Suppose that the range ®fandy determined from the total numbers of multiplications/divisions and of additions/
HFPS method i (X,Y) | Xmin<X<Xmax.Ymin<Y<Ymas. The subtractions are less than in the trivial method. That is,
original size become® X Q, whereP =X, Xmin @and Q
=Y max—Ymin- TO make all of the coordinates in the decoded 7P¢+27(N

image positive, we shift botk,,;, andy,, to zero. Accord-
ing to Eq.(9), the translation parameteesandf are modi-

ol-1

N2 <4 #itr

for multiplications/divisions,

fied toe’ andf’, respectively. SL-1 L2 _ @)
I the desired image is of sizé XN, then the magnifi-  /PrH17NT =N= <4 #itr
cation or contraction ratio becomeRXR, where R for additions/subtractions.

=min{M/P,N/Q}. The reason to choose the minimum of
M/P andN/Q is that we have to magnify or contract the We can expect extra saving on computations when the
original image consistently in both the vertical and horizon- searched levelk are few.
tal directions, to keep the shape of the scaled image the
same as the original one. To fit the desired size, the new” , _ ,
*Only for the sublevel CATs whose fixed points contribute to the exten-

translation parametees, andfn in the IFS code are calcu- sion of the contour is calculation of their corresponding sublevel CATs
lated by required.
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4 Quantization Effects many computed points will overlap. In order to efficiently
In the previous section, the IFS code and the coordinates ofdeécode a fractal image, we should chose an adequate itera-

the generated image points were real numbers. However,ioN number or find a convergence criterion for a given

real numbers must be quantized by a finite word length in 'Mag€ Size. o o
hardware implementations. Therefore we investigate the The convergence criterion has been clearly defined in
quantization effects on the decoded fractal images. Supposeth,e deterministic decoding algorltr;m as follow. Let the
that ak-bit word length is used for the IFS code and the N'th iterated image be denoted &&". The error between
coordinates of the generated points. If we assume the imagehen’th and (n—1)'th decoded images can be represented
to be of sizeM X M, the step size of quantization becomes by the Hamming distance defined in E42):

M/(2X—1). The image resolution increases if we choose a

higher k value. In Sec. 3, we found that the translation _ My iy =1 i

parameterg andf dominate the image scale. If the original E(n) o<§<M LD —F @Dl a4
size of the fractal image is sma#l andf are also small, and

vice versa. The quantization effects for lagandf will be where F™(i,j) and EM~1)(i,j) denote the i(j)’th pixel

more severe than those for smalandf. Since the fractal  yajues in then’th and (n—1)’th decoded images, respec-
image is generated iterative(point by poini, the propa- tively. If the ratio
gation problem of the quantization error occurs. If the word
length for denoting the IFS code or the calculateandy |E(n)—E(n—1)|
coordinates is not large enough, the quantization error of y= E 1
previously generated points will propagate to the current (n=1)
and following points. The decoded fractal image is com- . )
posed of fewer points than in the ideal case. Therefore it is S 1€SS than a threshold valyg,, the decoded image con-
important to provide a large enough word length in hard- Verges and the iteration process terminates. Otherwise, the
ware implementations. In our experiments, we examine the ltération continues. , ,
decoding results for different word lengths and determine  The random iteration algorithm does not specify a con-
what word length is enough to obtain a visually acceptable Yergence criterion to terminate the iteration process. There-
result. fore, we propose an efficient method to terminate the itera-
Since the decoded image is binary, we also calculate thetion process rather than set an iteration number according
Hamming distance between the ideal image and the de-to the required resolution or our experience. In the random
coded images in the presence of quantization effects. Letiteration algorithm, the reconstructed image is generated
the ideal fern image be within the rangg,<x<xmsand  Point by point. We count the overlap points during the it-
Viin<Y=Ymay. In order to calculate the Hamming distance, eration process. Suppose that the image size and resolution

we use the proposed scaling method to decode the image i ave been chosen. We first monitor each point and count

the desired sizé X M. Since the size of the decoded im- _Pﬁenoligﬁgr ofOic;\gr;g &OG:ntgr(]?s) ’r;négfeg}th 'teir::;ga dur-
age has to be fixed before the quantization, we only con- PP P P y9

sider the error image with the same size as the ideal image.Ing the iteration process. L&(n) be the number of pixels

In a binary image, if a pixel is black, we assign it the value exactly contributing to the fractal image. If the ratio
0; if white, 1. The Hamming distancd between two bi-

(19

: ; - O(n)
nary imaged, andF, is defined as =7
7(n) P(n) (16)
H:0§§<M [F1(i,j)—Fa(i.0)I, (12 is greater than a thresholg,, the iteration stops. Other-

wise, it continues.
The iteration numbers for different fractal images will

whereF(i,j) denotes thei(j)’th pixel value in the image . .
F. In our experiments, we measure the normalized percent-.Clepend on the desired scale and resolution of the fractal

: . .~ images. A sparse fractal image such as the snowflake may
%theeg r;?]rdeot/?]eofdtgael iizrgrensmgwﬂfﬁgcgeﬁﬁxe:sn the dis require only 3000 iterations. On the other hand, the castle

requires more than 9000 iterations, since it is much denser.
H This difference can be inferred from their fractal codes.
€% = —= X 100%. (13 First of all, we calculate the absolute value of the determi-
M nant,p;=|ad—bc|, of the matrixA in each CATW,. The
physical meaning op; is the weight corresponding to the
5 lteration Number in Decoding entire fractal image. These absolute values are then sum-

. . . . . marized as the contractivity sumfor comparison. That is,
The random iteration algorithm does not specify an itera- y sup P

tion number. Therefore, it must have a convergence crite- N
rion to decide when the decoding process should stop. As , _ , 17)
i i ; P= Pi-
shown in the section above, the generated points may over- =1
lap because of the quantization effects on the decoded im-
age in practical implementations. If we choose a small it- Theoretically, a larger contractivity should correspond to
eration number, the decoded fractal image is sparse in itsa larger area for the fractal image. However, some subim-
content. Otherwise, the decoding will be inefficient, since ages may overlap when they are chosen in the encoding
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Table‘,3 Thg calculated contractivity sums for four fractal images: that of the castle image. Thus the castle image should re-
Sierpinski triangle, fern, castle, and snowflake. quire the largest iteration number among the four fractal
images.
Image p

Sierpinski triangle 0.75 6 Simulation Results and Discussion

F 0.93 .

Ce"ll 0.01 The four IFS codes shown in Table 1 were used to test the

astie ' proposed methods. First of all, the proposed HFPS method
Snowflake 0.55

was employed to determine the original sizes and coordi-
nates of fractal images from their IFS codes only. The con-
tours determined for four fractal images are shown in Fig.
o . 5. For different CATS, their fixed points are represented by
stage* Four contractivity sums corresponding to four sets different symbols. The level-one contour is plotted by a
of fractal codes are listed in Table 3. As we can expect, the dotted line, and the level-two contour is plotted by a dashed
required iteration number for the fern and castle images is jine. In Figs. %a), 5(c), and Fd), the extension of the con-
more than for others, since those two images have largertour stops at level one. That is, the fixed points of the level-
contractivity sums. However, in the encoding stage of the ywo CATSs do not contribute to the extension of the contour.
fern image, the two subimages corresponding/Mp and As shown in Fig. B), the extension of the contour for the
W, partially overlap that for W,. Therefore, the effective  fern image stops at level three. The reason is that, in the
contractivity sum of the fern image should be smaller than encoding stage, the fixed points are usually selected at the
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Fig. 5 The contours determined by the proposed HFPS method: (a) Sierpinski triangle, (b) fern, (c)
castle, and (d) snowflake.
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Table 4 The number of the fixed points sought for four fractal im- T T T T T T

ages.
9 101

No of points sought

Image Level1 Level2 Level3 Level4 Total sl q
Sierpinski triangle 3 9 0 0 12
Fern 4 16 8 0 28 6 |
Castle 4 26 0 0 20
Snowflake 5 25 0 0 30

IS
T

corners of the image for easy encoding. Therefore, only a
few levels are utilized in our HFPS method. Table 4 shows 2r
that only a few points are calculated on the different levels
for the four fractal images. The proposed HFPS method is
efficient because of its low computation load. Thandy of : 1
ranges obtained from Fig. 5 are almost the same as those
shown in Table 2, which are obtained from the decoded ) 2 4 6 8 10
images.

We modify the translation parametezsandf to e’ and
f’, and then toe, and f,,. Table 5 shows the modified
parameters in the corresponding CATs for the four fractal
images. The generated fern image based on the modified
coefficientse’ andf’ is shown in Fig. 6, in which we can  number of computations for comparisons is about eight
see that the coordinates of the fern image are all positive.times the number of iterations. In addition, the
On the other hand, in Fig. 7 the decoded images are scalednultiplication/division and addition/subtraction numbers
to the same size, 532512. Therefore, we can in fact res- are proportional to the number of iterations and are the
cale and relocate the fractal images by using the proposedsame. As shown in Table 4, the number of comparisons in
HFPS method and the modification of IFS code. the proposed method is at mosk80= 240, which is much

Figure 8 shows the computations of the trivial methods less than & 9000=72,000. On the other hand, the numbers
and the proposed method under different numbers of CATs of multiplications/divisions and additions/subtractions in
(N) and searched levels. Three iteration numbers are usedhe proposed method depend on the number of fixed points,
in the trivial methods: 9000, 90,000, and 900,000. The the number of sublevel CATs, and the searched levels in

Fig. 6 The shifted fern image decoded with the modified IFS code
{a,b,c,d,e’,f'}.

Table 5 The modified translation parameters in IFS code. Here e’ and f' are calculated after the
change of coordinates, and e, and f, are calculated for resizing the original fractal image. Note that
the magnification/contraction ratio R is determined from the desired image size 512X 512.

Image w e’ f R e, f,

Sierpinski triangle 1 0 0 0 0

2 1 0 256 256 0

3 0.5 0.5 128 128
Fern 1 2.178 0 139.162 0

2 1.744 1.099 512 89.293 56.248

3 2.507 -0.127 : 128.358 —6.492

4 0.327 1.687 16.742 86.385
Castle 1 0 0 0 0

2 2 0 256 0

3 0 1 128 0 128

4 2 1 256 128
Snowflake 1 0.333 0 170.496 0

2 0 0.333 0 170.496

3 0.333 0.333 512 170.496 170.496

4 0.333 0.666 170.496 340.992

5 0.666 0.333 340.992 170.496
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Fig. 7 The fractal images decoded by the use of the modified coef-
LS . . -5 0 5 -5 0 5
ficients e, and f, shown in Table 5. The four images are of the © )
desired size 512X 512, and their shapes are identical to the original
ones.

Fig. 9 The decoded fractal fern images corresponding to the quan-
tization effects under different word lengths: (a) 9 bits, (b) 8 bits, (c)

7 bits, and (d) 6 bits.

the HFPS method. In the proposed HFPS method, only the

sublevel CATs of the CATSs related to the fixed points that

contribute to the extension of the contour are calculated. levels in the HFPS method for most of the images are usu-
Generally, only parts of the sublevel CATs are determined, ally fewer than four. Therefore, our method is more effi-
so the actual number of computations should be much lesscient than trivial methods, especially when we need to gen-
than given by the curves in Fig. 8. Since the number of erate high-resolution fractal imagdwhere the iteration
determined fixed points is much smaller than the iteration number will be much greater than 90,000

number, the number of comparisons in the proposed The fern image is used to examine the quantization ef-
method is negligible and is not shown in the figure. The fects on the decoded results. Figuréa) 2o 9(d) show the
curves shown in fact are upper bounds on the numbers ofdecoding results for word lengths of 9, 8, 7, and 6 bits,
computations for different cases. Furthermore, the searchedrespectively. It is clear that the decoded image quality is
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9 T T T
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Fig. 8 Comparison of the computations in the trivial method and the

proposed method under different numbers of CATs (N) and
searched levels.

Fig. 10 The Hamming distance (presented as a percentage error)
between the ideal and quantized images.
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Table 6 Required iteration number at different threshold values »y, for various fractal images.

Iteration number

Image 7n=0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Sierpinski triangle 5056 10227 14650 19914 24498 28704 32532 37145 41244 45040
Fern 4536 11591 17690 24542 31709 37144 48789 55383 66033 75856
Castle 12650 36790 60592 88392 119417 NA NA NA NA NA
Snowflake 2326 4695 6538 8459 10517 12751 14252 16168 18751 20252

visually acceptable when the word length is 9 or 8. If the can automatically terminate the iteration process in the ran-
word length is less then 8, the quantization effects are se-dom iteration algorithm. A fractal image with a large con-
vere and the image shape clearly changes. In Kig). the tractivity sum requires a large iteration number, and vice
quantization effects are especially severe, since the decodedersa.
points can only appear in some fixed positions. The proposed HFPS method can be extended to three-
Figure 10 gives a comparison of different word lengths. dimensional fractals.
The reconstructed image size is 54212, and the iteration A fractal image can be seen as a single object in an
number is set as 15,000. Figure 10 shows that to effectivelyimage synthesis framework. We can integrate different
eliminate the quantization error, a bit number more than 16 fractal images into a single image frame. If their original
is required in practical implementation, so that the distor- Sizes and coordinates are different, it is necessary to rescale
tion can be neglected. and relocate the original fractal images so that we can put
Considering the convergence criterion for the random them together. In our future work, we will focus on per-
iteration algorithm, we employ Eq16) to determine the  forming arbitrary geometric transformations of fractal im-

iteration number under different threshold valugg=0.1 ages such as rotation, skewing, reflection, and so on. These
to 1.0 for four test images. Table 6 shows the iteration transformations of original fractal images can be performed
number required for different threshold valugg and dif- Py modifying the IFS code in advance without postprocess-

ferent fractal images. For a given threshold valyg, the ing the decoded results.
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