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Chapter 2 Linear Time Invariant Systems

Basic concepts

Linear

Time Invariant

 1x n  1y n

 2x n  2y n

if

then    1 2x n x n +    1 2y n y n +

 x n  y nif

then  0x n n−  0y n n−

Linear Time Invariant (LTI) system: 

A system that is both linear and time-invariant. 
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Sec. 2.1 Discrete-time LTI Systems: The Convolution Sum

Key concepts

(i) definition of the discrete-time convolution;

(ii) unit impulse response;

(iii) ANY discrete-time LTI system can be modeled by a discrete-time convolution

operation;

(iv) ANY discrete-time signals can be represented by a sum of impulses

P.78

Unit Impulses

  1n = when n = 0, 

  0n = otherwise

n = 0

2.1.1  The Representation of Discrete-Time Signals in Terms of Impulses
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ANY discrete-time signals can be represented by a sum of impulses

[ ] [ 3] [ 3] [ 2] [ 2] [ 1] [ 1] [0] [ ]

[1] [ 1] [2] [ 2] [3] [ 3]

x n x n x n x n x n

x n x n x n

   

  

= + − + + − + + − + +

+ − + − + − +

.][][][ 
+

−=

−=
k

knkxnx 

P.78

ANY discrete-time signals can be represented by a sum of impulses

P.79
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2.1.2 The Discrete-Time Unit Impulse Response and the Convolution Sum 

Representation of LTI Systems 

[ ] [ ] [ ].
k

x n x k n k
+

=−

= −

If the system is linear, then the output of the system corresponding to x[n] can be

expressed as:

[ ] [ ] [ ]k

k

y n x k h n
+

=−

= 

where [ ]kh n is the output corresponding to [n-k].

P.80

[ ] [ ] [ ]
k

x n x k n k
+

=−

= − [ ] [ ] [ ]k

k

y n x k h n
+

=−

= 

A system that is linear but not time-invariant.

OutputInput

P.81
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[ ] [ ] [ ]
k

x n x k n k
+

=−

= − [ ] [ ] [ ]k

k

y n x k h n
+

=−

= 

A system that is linear but not time-invariant.

OutputInput

P.82

[ ] [ ] [ ]
k

x n x k n k
+

=−

= − [ ] [ ] [ ]k

k

y n x k h n
+

=−

= 

OutputInput

If the system is time-invariant, then

0[ ] [ ]kh n h n k= −

Denoted h0[n] by h[n], we have 

[ ] [ ] [ ]
k

y n x k h n k
+

=−

= −

This is the Discrete-Time Convolution. The convolution is usually denoted by 

[ ] [ ] [ ] [ ] [ ]
k

y n x n h n x k h n k
+

=−

=  = −



P.82
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Important concept:

ANY LTI system can be expressed as a convolution operation. 

[Example 2.1] [ ] [ ] [ ] [0] [ 0] [1] [ 1] 0.5 [ ] 2 [ 1].y n x n h n x h n x h n h n h n=  = − + − = + −

P.83
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[Example 2.2]

(the same as Example 2.1, from different point of view)

[ ] [ ] [ ] [ ] [ ]
k

y n x n h n x k h n k


=−

=  = −

y[n] is the sum of the product of x[k] and h[n-k]. 

P.84

[Example 2.2]

[0] [ ] [0 ] 0.5.
k

y x k h k


=−

= − =

[1] [ ] [1 ] 0.5 2.0 2.5.
k

y x k h k


=−

= − = + =

[2] [ ] [2 ] 0.5 2.0 2.5.
k

y x k h k


=−

= − = + =

[3] [ ] [3 ] 2.0.
k

y x k h k


=−

= − =

[ ] 0y n = otherwise

P.85

n=0

n=1

n=2

n=3
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[Example 2.3] [ ] [ ],

[ ] [ ],

nx n u n

h n u n

=

=

P.86

[Example 2.3] [ ] [ ] [ ] [ ] [ ]
k

y n x n h n x k h n k


=−

=  = −

P.87
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[Example 2.3] [ ] [ ],

[ ] [ ],

nx n u n

h n u n

=

=
0

[ ] [ ] [ ] [ ] [ ] ,
n

k

k k

y n x n h n x k h n k 


=− =

=  = − = 

11
[ ] [ ].

1

n

y n u n




+ −
=  

− 

P.88

[Example 2.4] 1, 0 4
[ ]

0,

n
x n

otherwise

 
= 


, 0 6
[ ] .

0,

n n
h n

otherwise

  
= 


[ ] [ ] [ ] [ ] [ ]
k

y n x n h n x k h n k


=−

=  = −

P.88-89
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[Example 2.4]

Interval 1:  n < 0

[ ] [ ] [ ] 0
k

y n x k h n k


=−

= − =

P.89-90

[Example 2.4]

Interval 2:  0  n  4

0

[ ] [ ] [ ] .
n

n k

k k

y n x k h n k 


−

=− =

= − = 

1

0

1
[ ] .

1

nn
r

r

y n





+

=

−
= =

−


P.89-90

Let n-k=r
k=0 → r=n
k=n → r=0
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[Example 2.4]

Interval 3:  4 < n  6

4

0

[ ] [ ] [ ] .n k

k k

y n x k h n k 


−

=− =

= − = 

4 14
1

0

[ ] ( ) .
1

n n
n k

k

y n
 

 


− +
−

=

−
= =

−


P.89-90

[Example 2.4]

Interval 4:  6 < n  10

4

6

[ ] [ ] [ ] .n k

k k n

y n x k h n k 


−

=− = −

= − = 

4 74 10
6

6 0

[ ] = .
1

nn n
r r

r r

y n
 

 


−− −
−

= =

−
= =

−
 

P.90-91

Let n-k=r
k=n-6 → r=6
k=4 → r=n-4
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[Example 2.4]

Interval 5: n > 10

[ ] [ ] [ ] 0.
k

y n x k h n k


=−

= − =

P.90-91

26



2021/2/25

14

[Example 2.5] x[n] = 2nu[-n], h[n] = u[n].

[ ] [ ] [ ] [ ] [ ]
k

y n x n h n x k h n k


=−

=  = −

0 0

[ ] [ ] [ ] 2 2k

k k

y n x k h n k
=− =−

= − = = 

Interval 1: n  0

P.92-93

[Example 2.5] x[n] = 2nu[-n], h[n] = u[n].

[ ] [ ] [ ] [ ] [ ]
k

y n x n h n x k h n k


=−

=  = −

Interval 2: n < 0

0

1

0

1 1
[ ] 2 ( ) ( )

2 2

1 1
( ) 2 2 2 .

2 2

n
k l m n

k l n m

n

m n n

m

y n
 

−

=− =− =

− 
+

=

= = =

 
= =  = 
 

  



P.92-93
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Sec. 2.2 Continuous-time LTI Systems: The Convolution

Integral

Key concepts

(i) definition of the convolution integral;

(ii) ANY continuous-time LTI system can be modeled by the convolution integral

The concepts in this section can be viewed as the continuous counterpart of those in 

Section 2.1.

P.93

A continuous function can be expressed as a linear combination of delayed unit pulses.

unit pulse:
1

, 0
( ) ,

0,

t
t

otherwise




  

= 


0
( ) lim ( ) ( ) .

k

x t x k t k
+


→

=−

=  −  

( ) ( ) ( ) .x t x t d   
+

−
= −

2.2.1 The Representation of Continuous-Time Signals in Terms of Impulses

P.94-95
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( ) ( ) ( ) .x t x t d   
+

−
= −

Specially, when x(t) = u(t),  

0
( ) ( ) .u t t d  



= −

2.2.2 The Continuous-Time Unit Impulse Response and the Convolution

Integral Representation of LTI Systems

0
( ) lim ( ) ( ) .

k

x t x k t k
+


→

=−

=  −  

If a system is linear, when the input is x(t), the corresponding output y(t) can be

expressed as:

0
( ) lim ( ) ( ) .k

k

y t x k h t
+


→

=−

=  

where ( )kh t is the output corresponding to ( )t k − 

P.98
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0
( ) lim ( ) ( )

( ) ( ) .

k

k

y t x k h t

x h t d 

+


→

=−

+

−

=  

=





0
( ) lim ( ) ( ) .

k

x t x k t k
+


→

=−

=  −  

Furthermore, if a system is linear and time-invariant, then

setting  = k

0( ) ( )h t h t = −

For notational convenience, we use h(t) to denote h0(t)

( ) ( ) ( ) .y t x h t d  
+

−
= −

P.98-100

( )x t
LTI system

( ) ( ) ( ) .y t x h t d  
+

−
= −

( ) ( ) ( ) ( ) ( ) .y t x t h t x h t d  
+

−
=  = −

continuous-time convolution:

h(t):   unit impulse response

(impulse response) 

i.e., the output of the system when the input is (t)

P.98-100
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[Example 2.6]

( ) ( ).h t u t=

( ) ( ) ( ) ( ) ( ) .y t x t h t x h t d  
+

−
=  = −

Interval 1: t < 0

( ) ( ) ( ) 0.y t x h t d  
+

−
= − =

P.101-102

( ) ( ), 0atx t e u t a−= 

[Example 2.6]

( ) ( ), 0atx t e u t a−=  ( ) ( ).h t u t=

( ) ( ) ( ) ( ) ( ) .y t x t h t x h t d  
+

−
=  = −

Interval 2: t > 0

, 0
( ) ( ) .

0,

ae t
x h t

otherwise

 
 

−  
− = 



0

( ) ( ) ( )

=

1
(1 ).

t
a

at

y t x h t d

e d

e
a



  



+

−

−

−

= −

= −





P.101-102
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[Example 2.6]

( ) ( ).h t u t=

( ) ( ) ( ) ( ) ( ) .y t x t h t x h t d  
+

−
=  = −

for t > 0
1

( ) (1 )aty t e
a

−= −

( ) 0y t = for t < 0

( )
1

( ) (1 )aty t e u t
a

−= −

P.101-102

( ) ( ), 0atx t e u t a−= 

Sec. 2.3 Properties of Linear Time-Invariant Systems

Key concepts

(i) All of the LTI systems have the following properties: (a) linearity, (b) time

invariance, (c) the commutative property, (d) the distributive property, and (e) the

associative property.

(ii) Moreover, some of the LTI systems have the properties of (a) memory (or

memoryless), (b) invertibility, (c) causality, and (d) stability.

(iii) Learn the definitions of (a) absolutely summable, (b) absolutely integrable, and

(c) the unit step response.

(iv) Learn the change of the support after convolution.

P.106
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[ ] [ ] [ ] [ ]* [ ]
k

y n x k h n k x n h n
+

=−

= − =

Discrete-Time Linear Time-Invariant (LTI) System 

( ) ( ) ( ) ( )* ( )y t x h t d x t h t  
+

−
= − =

Continuous-Time Linear Time-Invariant (LTI) System 

[Example 2.9]

1, 0,1
[ ] .

0,

n
h n

otherwise

=
= 


[ ] [ ]* [ ] [ ] [ 1]y n x n h n x n x n= = + −

The following systems have the same impulse response (the same response 

when x[n] = [n]) but not LTI.
2[ ] ( [ ] [ 1]) ,y n x n x n= + −

[ ] max( [ ], [ 1]).y n x n x n= −

P.106-107

2.3.1 The Commutative Property 

[ ]* [ ] [ ]* [ ]x n h n h n x n=

[ ] [ ] [ ] [ ],
k k

x k h n k h k x n k
+ +

=− =−

− = − 

( )* ( ) ( )* ( )x t h t h t x t=

( ) ( ) ( ) ( ) .x h t d h x t d     
+ +

− −
− = − 

Discrete-Time

Continuous-Time

P.107
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2.3.2 The Distributive Property 

1 2 1 2[ ]*( [ ] [ ]) [ ]* [ ] [ ]* [ ],x n h n h n x n h n x n h n+ = +

Discrete-Time

Continuous-Time

1 2 1 2( )*( ( ) ( )) ( )* ( ) ( )* ( )x t h t h t x t h t x t h t+ = +

=

P.108

[Example 2.10]

1
[ ] [ ] 2 [ ], [ ] [ ].

2

n

nx n u n u n h n u n
 

= + − = 
 

1 2[ ] [ ] [ ] [ ] [ ]y n x n h n y n y n=  = +

1

1
[ ] [ ] [ ]

2

n

y n u n h n
 

=  
 

2[ ] 2 [ ] [ ]ny n u n h n= − 

P.109-110
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2.3.3 The Associative Property

1 2 1 2[ ]*( [ ]* [ ]) ( [ ]* [ ])* [ ]x n h n h n x n h n h n=

Discrete-Time

Continuous-Time

1 2 1 2( )*[ ( )* ( )] [ ( )* ( )]* ( )x t h t h t x t h t h t=

P.110-111

2.3.4 LTI Systems with and without Memory

memoryless 

Discrete-Time

[ ] [ ]y n Kx n=

i.e., [ ] 0h n = when n  0

Otherwise, the system has memory. 

memoryless 

Continuous-Time

( ) ( )y t Kx t=

i.e., ( ) 0h t = when t  0

Otherwise, the system has memory. 

P.112-113
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2.3.5 Invertibility of LTI Systems

If h[n] is the impulse response of a discrete LTI system, then the system has 

the reversibility property if and only if there exists an h1[n] such that

Discrete-Time

1[ ]* [ ] [ ]h n h n n=

If h(t) is the impulse response of a continuous LTI system, then the system 

has the reversibility property if and only if there exists an h1(t) such that

Continuous-Time

1( )* ( ) ( )h t h t t=

P.114

[Example 2.11]

( ) ( ) ( ) ( )0*y t x t h t x t t= = −

( ) ( )0h t t t= −

1 0( ) ( )h t t t= +

( ) ( ) ( ) ( )1 0*y t h t y t t x t= + =

If 

( ) ( ) ( )1h t h t t =

P.115
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[Example 2.12]

           *
n

m m

y n x n h n x m u n m x m


=− =−

= = − = 

         1* 1y n h n y n y n x n= − − =

     1h n h n n =

If    h n u n=

When

1[ ] [ ] [ 1]h n n n = − −

P.115-116

2.3.6 Causality for LTI Systems 

Discrete-Time

[ ] 0h n = for n < 0

Continuous-Time

( ) 0h t = for t < 0

0

[ ] [ ] [ ] [ ] [ ],
n

k k

y n x k h n k h k x n k


=− =

= − = − 

0
( ) ( ) ( ) ( ) ( )

t

y t x h t d h x t d     


−
= − = − 

P.116-117
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2.3.7  Stability for LTI Systems

Discrete-Time

Continuous-Time

If |x[n]| is bounded, then |y[n]| is also bounded. 

Sufficient condition for a discrete-time LTI system to be stable

[ ]
k

h k
+

=−

 

If |x(t)| is bounded, then |y(t)| is also bounded. 

Sufficient condition for a continuous-time LTI system to be stable

| ( ) |h d 
+

−
 

P.117-118

[Example 2.13]

[ ] [ ]h n n=

( ) ( )h t t=
stable

[ ] [ ]h n u n=

( ) ( )h t u t=
may not be stable

P.119



2021/2/25

26

2.3.8  The Unit Step Response of an LTI System 

Discrete-Time

Unit step response:  The response when the input is u[n] (or u(t)) 

The unit step response s[n] is

[ ] [ ]* [ ] [ ]
n

k

s n u n h n h k
=−

= = 

Continuous-Time

( ) ( )* ( ) ( ) ,
t

s t u t h t h d 
−

= = 

Therefore, [ ] [ ] [ 1]h n s n s n= − −

Therefore, 
( )

( ) '( )
ds t

h t s t
dt

= =

P.120-121

2.3.9  Variation of Support and Length After Convolution 

Support: A set of points where a function is nonzero. 

x(t) = 0          for t < t1 and t > t2,         t2 > t1, 

x(t)  0          for t1 < t < t2, 

If

support: t  (t1, t2)

length: t2 − t1.

Continuous-time case

P.121
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If the support of x(t) is t  (t1, t2)

Support and Length Variation Property for  Continuous-Time Convolution

the support of h(t) is t  (t3, t4)

( ) ( )* ( )y t x t h t=

then the support of y(t) is equal to (or within)

t  (t1+ t3,  t2+ t4)

the length of y(t) is

Ly = t2+ t4 − t3 − t1 = Lx + Lh. 

P.121

x[n] = 0          for t < n1 and t > n2,         n2 > n1, 

x[n]  0          for n1 < t < n2, 

If

support: n  [n1, n2]

length: n2 − n1+1

Discrete-time case

P.122
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If the support of x[n] is n  [n1, n2]

Support and Length Variation Property for  Discrete-Time Convolution

the support of h[n] is

[ ] [ ]* [ ]y n x n h n=

then the support of y[n] is equal to (or within)

n  [n1+ n3,  n2+ n4]

the length of y[n] is

n  [n3, n4]

Ly = n2+ n4 − n3 − n1 + 1= Lx + Lh − 1. 

P.122-123

Sec. 2.4 Causal LTI Systems Described by Differential and

Difference Equations

Key concepts

(i) when the initial conditions are all zero, a linear differential / difference equation

is a linear system.

(ii) with the condition of initial rest, a linear differential / difference equation with

constant coefficients is a linear time-invariant (LTI) system.

(iii) how to use block diagrams to represent a system

P.123
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2.4.1 Linear Constant-Coefficient Differential Equations

[Example 2.14]

( )
2 ( ) 0

dy t
y t

dt
+ =

( )
2 ( ) ( )

dy t
y t x t

dt
+ = where

3( ) ( )tx t Ke u t=

( ) ( ) ( )p hy t y t y t= +

Solution:

( )hy t is the solution of  

( )py t is any the original  solution

( ) st

hy t Ae=
3( ) , 0

5

t

p

K
y t e t= 

P.125

A Linear Constant Coefficient Differential Equation with Initial Rest is

Causal and LTI

0 0

( ) ( )k kN M

k kk k
k k

d y t d x t
a b

dt dt= =

= 
If

and the system in initial rest

1

0 0
0 1

( ) ( )
( ) 0

N

N

dy t d y t
y t

dt dt

−

−
= = = =

then the system is causal and LTI.

P.127-128
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2.4.2 Linear Constant-Coefficient Difference Equations

If

and the system in initial rest

then the system is causal and LTI.

0 0

[ ] [ ]
N M

k k

k k

a y n k b x n k
= =

− = − 

A Linear Constant Coefficient Difference Equation with Initial Rest Is

Causal and LTI

y[n0 – 1] = y[n0 – 2] = … = y[n0 – N] = 0. 

P.128

2.4.3 Block Diagram Representations of First-Order Systems Described by

Differential and Difference Equations

P.133
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P.134

P.135
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Sec. 2.5 Singularity Functions

Key concepts

(i) studying the property of the continuous unit impulse (summarized in TA Table

2.1);

(ii) studying the unit doublet and its property

P.135

2.5.1 The Unit Impulse as an Idealized Short Pulse 

( ) ( )* ( )x t x t t= ( ) ( )* ( )t t t  =when x(t) = (t)

( ) ( )* ( )r t t t   =

There is no explicit form of a unit impulse. 

Instead, we can say some function behaves like a unit impulse

0
( )r t →0

( )t →
and can all be viewed as a unit impulse. 

P.136
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2.5.2 Defining the Unit Impulse through Convolution 

We define δ(t) as the signal for which

( ) ( )* ( )x t x t t=

is satisfied.

P.137

2.5.3 Unit Doublets and Other Singularity Functions 

Definition 2.6 Unit Doublet

1( ) ( )
d

u t t
dt
= 1( ) ( ) ( )

d
x t x t u t

dt
= 

Figure 1.34

P.141-143
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2

2 1 1 2
( ) ( ) ( ) ( )

d
u t u t u t t

dt
=  =

2

2 2
( ) ( ) ( )

d
x t u t x t

dt
 =

1 1( ) ( )* * ( ) ( )
k

k k

k times

d
u t u t u t t

dt
= = ( ) ( ) ( )

k

k k

d
x t u t x t

dt
 =

Self-convolution of the Unit Doublet

P.141-142

( ) ( ) ,
t

u t d  
−

= 
( )* ( ) ( )

t

x t u t x d 
−

= 

2 ( ) ( )* ( ) ( ) ( ).
t

u t u t u t u d tu t −
−

= = =

Self-Convolution of the Step Function

Unit Step Function 

( )2( )* ( ) ( )* ( )* ( ) ( ) .
t

x t u t x t u t u t x d d


  −
− −

= =  

(unit ramp function)

P.143-144



2021/2/25

35

Self-Convolution of the Step Function

1

( 1)( ) ( )* * ( ) ( ) ( )
( 1)!

k
t

k k

k times

t
u t u t u t u d u t

k
 

−

− − −
−

= = =
−

( )1 2 1

1 2 1( )* ( ) ( )
kt

k kx t u t x d d d d
  

    
−

− −
− − − −

=    

0( ) ( ),t u t =

1( ) ( ).u t u t−=

( )* ( ) ( )k r k ru t u t u t+=

P.144

Ta Table 2.1

P r o p e r t i e s o f t h e

Continuous Unit Impulse

and Other Singularity

Functions

P.146
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Sec. 2.6 LTI Systems in the Multiple Dimensional Case

Key concepts

Learning

(i) the LTI system in the multiple dimensional case,

(ii) the impulse response in the multiple dimensional case,

(iii) the convolution operation in the multiple dimensional case,

(iv) how the range varies after performing multiple dimensional convolution

P.145

Multiple dimensional system

( ) ( )1 2 1 2, , , , , ,N Nx t t t y t t t→

Linear Multiple dimensional system

( ) ( ) ( ) ( )1 1 2 2 1 2 1 1 2 2 1 2, , , , , , , , , , , ,N N N Nx t t t x t t t y t t t y t t t   + → +

if
( ) ( )1 1 2 1 1 2, , , , , ,N Nx t t t y t t t→ and ( ) ( )2 1 2 2 1 2, , , , , ,N Nx t t t y t t t→

Time-invariant multiple dimensional system

( ) ( )1 1 2 2 1 1 2 2, , , , , ,N N N Nx t d t d t d y t d t d t d− − − → − − −

P.145-146
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A multiple dimensional linear and time-invariant (LTI) system can be expressed

as a convolution form:

( ) ( ) ( )1 2 1 2 1 1 2 2 1 2, , , , , , , , ,N N N N Ny t t t x h t t t d d d        
  

− − −
= − − −  

( )1 2, , , Nh   where is the response when the input is a multiple dimensional 

unit impulse:

( ) ( )1 2 1 2, , , , , ,N Nt t t h t t t →

where ( ) ( ) ( ) ( )1 2 1 2, , , N Nt t t t t t   =

P.147

Multiple dimensional system

Linear Multiple dimensional system

if and

Time-invariant multiple dimensional system

   1 2 1 2, , , , , ,N Nx n n n y n n n→

       1 1 2 2 1 2 1 1 2 2 1 2, , , , , , , , , , , ,N N N Nx n n n x n n n y n n n y n n n   + → +

   1 1 2 1 1 2, , , , , ,N Nx n n n y n n n→    2 1 2 2 1 2, , , , , ,N Nx n n n y n n n→

   1 1 2 2 1 1 2 2, , , , , ,N N N Nx n d n d n d y n d n d n d− − − → − − −

P.147
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A multiple dimensional linear and time-invariant (LTI) system can be expressed

as a convolution form:

     
2 1

1 2 1 2 1 1 2 2, , , , , , , , ,
N

N N N N

k k k

y n n n x k k k h n k n k n k
  

=− =− =−

= − − −  

where h[n1, n2, …, nN] is the response when the input is a multiple dimensional 

unit impulse:

where

   1 2 1 2, , , , , ,N Nn n n h n n n →

       1 2 1 2, , , N Nn n n n n n   =

P.148

[Example 2.17]

x[n1, n2] = 255 for |n1|  3 and |n2|  3, x[n1, n2] = 0 otherwise.

h[-1, 0] = h[-1, -1] = h[0, -1] = 1, 

h[1, 0] = h[1, 1] = h[0, 1] = -1,         h[n1, n2] = 0 otherwise 

     
2 1

1 2 1 2 1 1 2 2, , ,
k k

y n n x k k h n k n k
 

=− =−

= − − 

P.148
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[Example 2.17]

 

   
2 1

1 2

1 2 1 1 2 2

,

, ,
k k

y n n

x k k h n k n k
 

=− =−

=

− − 

P.149

[Properties]

Except for that causality, memory/memoryless, and the unit step function are hard to 

define in the multiple dimensional case, other properties listed in Section 2.3 can 

also be applied to the multiple dimensional case. 

stable

( )1 2 1 2, , , N Nh d d d     
  

− − −
   

 
2 1

1 2, , ,
N

N

k k k

h k k k
  

=− =− =−

   

P.150
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[Support and Size]

( )1 2, , , 0Nx t t t = for    t1 < a1 or t1 > b1,      t2 < a2 or t2> b,   ………….,   If

tN < aN or tN > bN

( )1 2, , , 0Nx t t t  for    a1 < t1 < b1, a2 < t2 < b2,   ……, aN < t1 < bN.

support:

{(t1, t2, …, tN) |t1  (a1,  b1),    t2  (a2,  b2),   …..,   tN  (aN,  bN)}

size:

S1  S2  ….  SN where  Sn = bn − an,    n = 1, 2, …, N. 

P.150

[Support and Size after Convolution]

Suppose that 

the support of x(t1, t2, …, tN) is {(t1, t2, …, tN) |t1  (a1, b1), t2  (a2, b2), ….., tN  (aN, bN)}

the support of h(t1, t2, …, tN) is {(t1, t2, …, tN) |t1  (c1, d1), t2  (c2, d2), ….., tN  (cN,  

dN)}.
If

the support of y(t1, t2, …, tN) is 

( ) ( ) ( )1 2 1 2 1 1 2 2 1 2, , , , , , , , ,N N N N Ny t t t x h t t t d d d        
  

− − −
= − − −  

{(t1, t2, …, tN) |t1  (a1+c1, b1+d1), t2  (a2+c2, b2+d2),   …..,   tN  (aN+cN, bN+dN)}. 

the size of y(t1, t2, …, tN) is 

(S1 +T1)  (S2 +T2)  ….  (SN +TN) 
(Sn = bn − an) 

(Tn = dn − cn) 

P.151
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[Support and Size]

for    n1 < a1 or n1 > b1,      n2 < a2 or n2> b,   ………….,   If

nN < aN or nN > bN

for    a1 < n1 < b1, a2 < n2 < b2,   ……, aN < n1 < bN.

support:

size:

S1  S2  ….  SN where  Sn = bn − an+1,    n = 1, 2, …, N. 

 1 2, , , 0Nx n n n =

 1 2, , , 0Nx n n n 

{(n1, n2, …, nN) |n1  [a1,  b1],    n2  [a2,  b2],   …..,   nN  [aN,  bN]}. 

P.151

[Support and Size after Convolution]

Suppose that 

the support of x[n1, n2, …, nN] is {[n1, n2, …, nN] |n1  (a1, b1), n2  (a2, b2), ….., nN  (aN, bN)}

the support of h[n1, n2, …, nN[ is {[n1, n2, …, nN] |n1  (c1, d1), n2  (c2, d2), ….., nN  (cN,  dN)}.

If

the support of y[n1, n2, …, nN] is

{[n1, n2, …, nN] |n1  [a1+c1, b1+d1], n2  [a2+c2, b2+d2],   …..,   nN  [aN+cN, bN+dN]}. 

the size of y[n1, n2, …, nN] is

(S1 +T1 -1)  (S2 +T2 -1)  ….  (SN +TN -1) 
(Sn = bn − an+1) 

(Tn = dn − cn+1) 

     
2 1

1 2 1 2 1 1 2 2, , , , , , , , ,
N

N N N N

k k k

y n n n x k k k h n k n k n k
  

=− =− =−

= − − −  

P.151
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[Support and Size after Convolution]

For [Example 2.17]

the support of x[n1, n2] {[n1, n2] | n1  [-3, 3], n2  [-3, 3]}

the support of h[n1, n2] {[n1, n2] | n1  [-1, 1], n2  [-1, 1]}

size: 7 7

size: 3 3

the support of y[n1, n2] = x[n1, n2] * h[n1, n2] is within 

{[n1, n2] | n1  [-3-1, 3+1] = [-4, 4], n2  [-3-1, 3+1] = [-4, 4]}.

the size of y[n1, n2]

(7+3−1)  (7+3−1) = 9  9

P.151

Sec. 2.7 Several Well-known LTI Systems

Key concepts

Learning some well-known LTI systems, including 

(i) difference and accumulation, 

(ii) edge detection, and 

(iii) smother and local average 

P.152
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• delay (continuous time) 

x(t) * (t−t0)   = x(t−t0)

• delay (discrete time) 

x[n] * [n−n0]   = x[n−n0] 

• differentiation

( ) ( ) ( )1* dx t u t x t
dt

= ( ) ( ) ( )*
k

k k

dx t u t x t
dt

=

• difference

     ( )    1 1x n n n x n x n  − − = − −

P.152

• integral 

• accumulation

1( )* ( ) ( )
t

x t u t x d −
−

= 

( )1 2 1

1 2 1( )* ( ) ( )
kt

k kx t u t x d d d d
  

    
−

− −
− − − −

=    

 [ ]
n

m

y n x m
=−

= 

P.152-153
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Example

Edge Detection

or

P.153

Edge Detection (short impulse response)

(a) A rectangular signal x1[n]; 

(b) x2[n] = x1[n] + noise; 

(c) x1[n] * h1[n]

(d) x2[n] * h1[n]

P.154
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89Edge Detection (long impulse response)

(a) A rectangular signal x1[n]; 

(b) x2[n] = x1[n] + noise; 

(e) x1[n] * h2[n]

(f) x2[n] * h2[n]

P.154

Edge Detection (Two-Dimensional Case)

Example: 

 1 2

1 0 1

, 0

1 0 1

h n n a a

− 
 = −
 

−  

for -1  n1  1  and -1  n2  1

P.155
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Edge Detection (Two-Dimensional Case)

Example: 

 1 2

1 0 1

, 0

1 0 1

h n n a a

− 
 = −
 

−  

(horizontal edge detection)

 1 2

1 1

, 0 0 0

1 1

a

h n n

a

 
 =
 
− − −  

(vertical edge detection)

 1 2

0 1

, 1 0 1

1 0

a

h n n

a

 
 = −
 
− −  

(45 edge detection)

 1 2

1 0

, 1 0 1

0 1

a

h n n

a

 
 = −
 

− −  

(135 edge detection)

P.155-156

Edge Detection (Two-Dimensional Case)

 1 2

1 0 1

, 2 0 2

1 0 1

h n n

− 
 = −
 

−  

input

output

P.157
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Edge Detection (Two-Dimensional Case)

 1 2

1 2 1

, 0 0 0

1 2 1

h n n

 
 =
 
− − −  

input

output

P.157

Edge Detection (Two-Dimensional Case)

 1 2

1 2 1

, 0 0 0

1 2 1

h n n

 
 =
 
− − −  

input

output output

 1 2

1 0 1

, 2 0 2

1 0 1

h n n

− 
 = −
 

−  

P.158
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Smoother

     y n x n h n= 

Example

 
1

1
2 1

h n
L

=
+

for −L1  n  L1,   0h n = otherwise

       
1

1
1

1
2 1

n L

m n L

y n x n h n x m
L

+

= −

=  =
+  (local average)

P.157-158

Smoother

Example

  ( )0.05 20x n n noise= − +

P.159
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Sec. 2.8 Summary

• In this chapter, we have developed the representations for LTI systems by

convolution operations, both in discrete time and in continuous time.

Periodic Aperiodic

FS
CT

DT
(Chap 3)

FT
DT

CT (Chap 4)

(Chap 5)

LT

zT DT

(Chap 9)

(Chap 10)

Unbounded/Non-convergent

CT

• LTI systems can be analyzed by the Fourier series (FS), the Fourier transform (FT),

the Laplace transform (LT), and the z-transform (ZT).

Sec. 2.9 Further Reading

Matlab for convolution

y = conv(x, h).

y = conv2(x, h),           y = convn(x, h).

P.160
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Processing an audio file

[x, fs] = audioread(‘filename’);   % read

audiowrite(‘filename’, x, fs); % create an audio file

sound(x, fs);  % play

x: a column vector  

or two column vectors (stereophonic case)               

P.161

Processing an image file

x = double(imread(‘filename’)); % read

imwrite(x, ‘filename’); % create an image file

image(x);  or  imagesc(x);   % display

image(x);  colormap(gray(256));   % display a gray-level image

x: a matrix (gray level image) 

or three matrices (color image)               

P.161
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Processing a video file

OBJ  =  VideoReader(‘****.mp4’);             % read

x = read(OBJ);

x = double(x);

vidObj = VideoWriter('test.avi');   % create a video file

open(vidObj);

writeVideo(vidObj, x);

close(vidObj)

implay(‘filename’); or  implay(x, nf); display

P.161


