Signals and Systems

Alan. V. Oppenheim and Alan S. Willsky with S. Hamid Nawab Adaptor: Jian-Jiun Ding

Chapter 2 Linear Time Invariant Systems

Chapter 2 Linear Time Invariant Systems

Sec. 2.1 Discrete-time LTI Systems: The Convolution Sum
Sec. 2.2 Continuous-time LTI Systems: The Convolution Integral
Sec. 2.3 Properties of Linear Time-invariant Systems
Sec. 2.4 Causal LTI Systems Described by Differential and Difference Equations
Sec. 2.5 Singularity Functions
Sec. 2.6 LTI Systems in the Multiple Dimensional Case
Sec. 2.7 Several Well-known LTI Systems
Sec. 2.8 Summary
Sec. 2.9 Further Reading
(incl. Matlab Commands for Multimedia Signal Processing)

Linear
if

$$
\begin{array}{ll}
x_{1}[n] \longrightarrow & y_{1}[n] \\
x_{2}[n] \longrightarrow & y_{2}[n]
\end{array}
$$

then

$$
\alpha x_{1}[n]+\beta x_{2}[n] \longrightarrow \alpha y_{1}[n]+\beta y_{2}[n]
$$

Time Invariant

$$
\begin{aligned}
& \text { if } \quad x[n] \longrightarrow y[n] \\
& \text { then } x\left[n-n_{0}\right] \longrightarrow y\left[n-n_{0}\right]
\end{aligned}
$$

Linear Time Invariant (LTI) system:
A system that is both linear and time-invariant.

Sec. 2.1 Discrete-time LTI Systems: The Convolution Sum

Key concepts

(i) definition of the discrete-time convolution;
(ii) unit impulse response;
(iii) ANY discrete-time LTI system can be modeled by a discrete-time convolution operation;
(iv) ANY discrete-time signals can be represented by a sum of impulses

2.1.1 The Representation of Discrete-Time Signals in Terms of Impulses

Unit Impulses

$$
\begin{array}{ll}
\delta[n]=1 & \text { when } n=0 \\
\delta[n]=0 & \text { otherwise }
\end{array}
$$

ANY discrete-time signals can be represented by a sum of impulses

$$
\begin{aligned}
x[n]= & \ldots \\
& +x[-3] \delta[n+3]+x[-2] \delta[n+2]+x[-1] \delta[n+1]+x[0] \delta[n] \\
& +x[1] \delta[n-1]+x[2] \delta[n-2]+x[3] \delta[n-3]+\ldots \\
x[n]= & \sum_{k=-\infty}^{+\infty} x[k] \delta[n-k] .
\end{aligned}
$$

ANY discrete-time signals can be represented by a sum of impulses

2.1.2 The Discrete-Time Unit Impulse Response and the Convolution Sum Representation of LTI Systems

$$
x[n]=\sum_{k=-\infty}^{+\infty} x[k] \delta[n-k] .
$$

If the system is linear, then the output of the system corresponding to $x[n]$ can be expressed as:

$$
y[n]=\sum_{k=-\infty}^{+\infty} x[k] h_{k}[n]
$$

where $h_{k}[n]$ is the output corresponding to $\delta[n-k]$.
P. 80

(b)

A system that is linear but not time-invariant.

$$
x[n]=\sum_{k=-\infty}^{+\infty} x[k] \delta[n-k]
$$

Output

Output

$$
y[n]=\sum_{k=-\infty}^{+\infty} x[k] h_{k}[n]
$$

$y[n]=\sum_{k=-\infty}^{+\infty} x[k] h_{k}[n]$

A system that is linear but not time-invariant.

$$
x[n]=\sum_{k=-\infty}^{+\infty} x[k] \delta[n-k]
$$

Output

$$
y[n]=\sum_{k=-\infty}^{+\infty} x[k] h_{k}[n]
$$

If the system is time-invariant, then

$$
h_{k}[n]=h_{0}[n-k]
$$

Denoted $h_{0}[n]$ by $h[n]$, we have

$$
y[n]=\sum_{k=-\infty}^{+\infty} x[k] h[n-k]
$$

This is the Discrete-Time Convolution. The convolution is usually denoted by *

$$
y[n]=x[n] * h[n]=\sum_{k=-\infty}^{+\infty} x[k] h[n-k]
$$

Important concept:
ANY LTI system can be expressed as a convolution operation.
[Example 2.1] $y[n]=x[n] * h[n]=x[0] h[n-0]+x[1] h[n-1]=0.5 h[n]+2 h[n-1]$.
h[n]

(b)

(c)

[Example 2.2]

(the same as Example 2.1, from different point of view)

$$
y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
$$

$y[n]$ is the sum of the product of $x[k]$ and $h[n-k]$.

(a)
[Example 2.2

(a)

$n=0$

$\longrightarrow y[0]=\sum_{k=-\infty}^{\infty} x[k] h[0-k]=0.5$.

$n=3$

$\longrightarrow y[3]=\sum_{k=-\infty}^{\infty} x[k] h[3-k]=2.0$.
$y[n]=0 \quad$ otherwise
[Example 2.3] $x[n]=\alpha^{n} u[n]$,
$h[n]=u[n]$,

(a)

Figure 2.5 The signals $x[n]$ and $h[n]$ in Example 2.3.
[Example 2.3] $y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]$

(b)

(c)

Figure 2.6 Graphical interpretation of the calculation of the convolution sum for Example 2.3.
[Example 2.3] $\quad x[n]=\alpha^{n} u[n], \quad y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{k=0}^{n} \alpha^{k}$, $h[n]=u[n]$,

$$
y[n]=\left(\frac{1-\alpha^{n+1}}{1-\alpha}\right) u[n] .
$$

Figure 2.7 Output for Example 2.3.
[Example 2.4]

Figure 2.8 The signals to be convolved in Example 2.4.
[Example 2.4]
Interval 1: $n<0$

(a)

P.89-90
(b)
[Example 2.4]
Interval 2: $0 \leq n \leq 4$

(a)

(c)

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=0
$$

[Example 2.4]

Interval 3: $4<n \leq 6$

(a)

$$
\begin{aligned}
& y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{k=0}^{4} \alpha^{n-k} . \\
& y[n]=\alpha^{n} \sum_{k=0}^{4}\left(\alpha^{-1}\right)^{k}=\frac{\alpha^{n-4}-\alpha^{n+1}}{1-\alpha} .
\end{aligned}
$$

$$
\alpha^{n} \cdot \frac{1-\alpha^{-5}}{1-x^{-1}}=\frac{\alpha^{m}-\alpha^{n-5}}{1-\frac{1}{\alpha}}
$$

(d)

$$
4<n \leqslant 6
$$

$$
\begin{aligned}
& =\frac{\alpha^{n+1}-\alpha^{n-4}}{\alpha^{n-1}} \\
& =\frac{\alpha^{n-\alpha}-\alpha^{n+1}}{1-\alpha}
\end{aligned}
$$

P.89-90
[Example 2.4]
Interval 4: $6<n \leq 10$

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=\sum_{k=n-6}^{4} \alpha^{n-k}
$$

Let $n-k=r$
$k=n-6 \rightarrow r=6$
$k=4 \rightarrow r=n-4$
(a)

$$
y[n]=\sum_{r=6}^{n-4} \alpha^{r}=\sum_{r=0}^{10-n} \alpha^{6-r}=\frac{\alpha^{n-4}-\alpha^{7}}{1-\alpha}
$$

(e)
[Example 2.4]
Interval 5: $n>10$

$$
y[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]=0 .
$$

(a)

(f)

Figure 2.10 Result of performing the convolution in Example 2.4.
[Example 2.5]

$$
\begin{aligned}
& x[n]=2^{n} u[-n], \quad h[n]=u[n] . \\
& y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
\end{aligned}
$$

 Interval 1: $n \geq 0$

$$
y[n]=\sum_{k=-\infty}^{0} x[k] h[n-k]=\sum_{k=-\infty}^{0} 2^{k}=2
$$

(a)
P.92-93
[Example 2.5]

$$
\begin{gathered}
x[n]=2^{n} u[-n], \quad h[n]=u[n] . \\
y[n]=x[n] * h[n]=\sum_{k=-\infty}^{\infty} x[k] h[n-k]
\end{gathered}
$$

Interval 2: $n<0$

$$
\begin{aligned}
y[n] & =\sum_{k=-\infty}^{n} 2^{k}=\sum_{l=-n}^{\infty}\left(\frac{1}{2}\right)^{l}=\sum_{m=0}^{\infty}\left(\frac{1}{2}\right)^{m-n} \\
& =\left(\frac{1}{2}\right)^{-n} \sum_{m=0}^{\infty}\left(\frac{1}{2}\right)^{m}=2^{n} \cdot 2=2^{n+1} .
\end{aligned}
$$

Sec. 2.2 Continuous-time LTI Systems: The Convolution Integral

Key concepts

(i) definition of the convolution integral;
(ii) ANY continuous-time LTI system can be modeled by the convolution integral

The concepts in this section can be viewed as the continuous counterpart of those in Section 2.1.

2.2.1 The Representation of Continuous-Time Signals in Terms of Impulses

A continuous function can be expressed as a linear combination of delayed unit pulses. unit pulse: $\quad \delta_{\Delta}(t)=\left\{\begin{array}{ll}\frac{1}{\Delta}, & 0 \leq t \leq \Delta \\ 0, & \text { otherwise }\end{array}\right.$,

$$
x(t)=\lim _{\Delta \rightarrow 0} \sum_{k=-\infty}^{+\infty} x(k \Delta) \delta_{\Delta}(t-k \Delta) \Delta .
$$

$$
x(t)=\int_{-\infty}^{+\infty} x(\tau) \delta(t-\tau) d \tau .
$$

$$
x(t)=\int_{-\infty}^{+\infty} x(\tau) \delta(t-\tau) d \tau
$$

Specially, when $x(t)=u(t)$,

$$
u(t)=\int_{0}^{\infty} \delta(t-\tau) d \tau
$$

2.2.2 The Continuous-Time Unit Impulse Response and the Convolution Integral Representation of LTI Systems

$$
x(t)=\lim _{\Delta \rightarrow 0} \sum_{k=-\infty}^{+\infty} x(k \Delta) \delta_{\Delta}(t-k \Delta) \Delta .
$$

If a system is linear, when the input is $x(t)$, the corresponding output $y(t)$ can be expressed as:

$$
y(t)=\lim _{\Delta \rightarrow 0} \sum_{k=-\infty}^{+\infty} x(k \Delta) h_{k \Delta}(t) \Delta .
$$

where $h_{k \Delta}(t)$ is the output corresponding to $\delta_{\Delta}(t-k \Delta)$

$$
\begin{aligned}
x(t)=\lim _{\Delta \rightarrow 0} \sum_{k=-\infty}^{+\infty} x(k \Delta) \delta_{\Delta}(t-k \Delta) \Delta . \longrightarrow y(t)= & \lim _{\Delta \rightarrow 0} \sum_{k=-\infty}^{+\infty} x(k \Delta) h_{k \Delta}(t) \Delta \\
= & \int_{-\infty}^{+\infty} x(\tau) h_{\tau}(t) d \tau . \\
& \operatorname{setting} \tau=k \Delta
\end{aligned}
$$

Furthermore, if a system is linear and time-invariant, then

$$
h_{\tau}(t)=h_{0}(t-\tau)
$$

For notational convenience, we use $h(t)$ to denote $h_{0}(t)$

$$
y(t)=\int_{-\infty}^{+\infty} x(\tau) h(t-\tau) d \tau \text {. }
$$

$$
x(t) \xrightarrow{\text { LTI system }} y(t)=\int_{-\infty}^{+\infty} x(\tau) h(t-\tau) d \tau .
$$

continuous-time convolution:

$$
y(t)=x(t) * h(t)=\int_{-\infty}^{+\infty} x(\tau) h(t-\tau) d \tau .
$$

$h(t)$: unit impulse response (impulse response)
i.e., the output of the system when the input is $\delta(t)$

[Example 2.6]

$$
\begin{aligned}
& x(t)=e^{-a t} u(t), \quad a>0 \quad h(t)=u(t) . \\
& y(t)=x(t) * h(t)=\int_{-\infty}^{+\infty} x(\tau) h(t-\tau) d \tau .
\end{aligned}
$$

Interval 1: $t<0$

$$
y(t)=\int_{-\infty}^{+\infty} x(\tau) h(t-\tau) d \tau=0
$$

[Example 2.6]

$$
\begin{aligned}
& x(t)=e^{-a t} u(t), \quad a>0 \quad h(t)=u(t) . \\
& y(t)=x(t) * h(t)=\int_{-\infty}^{+\infty} x(\tau) h(t-\tau) d \tau .
\end{aligned}
$$

Interval 2: $t>0$

$$
x(\tau) h(t-\tau)=\left\{\begin{array}{ll}
e^{-a \tau}, & 0<\tau<t \\
0, & \text { otherwise }
\end{array} .\right.
$$

$$
y(t)=\int_{-\infty}^{+\infty} x(\tau) h(t-\tau) d \tau
$$

$$
=\int_{0}^{t} e^{-a \tau} d \tau
$$

$$
=\frac{1}{a}\left(1-e^{-a t}\right)
$$

[Example 2.6]

$$
\begin{array}{lll}
x(t)=e^{-a t} u(t), & a>0 & h(t)=u(t) \\
y(t)=x(t) * h(t)=\int_{-\infty}^{+\infty} x(\tau) h(t-\tau) d \tau . \\
y(t)=\frac{1}{a}\left(1-e^{-a t}\right) & \text { for } t>0 & y(t)=\frac{1}{\mathrm{a}}\left(1-\mathrm{e}^{-a \mathrm{t}}\right) \mathrm{u}(\mathrm{t}) \\
y(t)=0 & \text { for } t<0 &
\end{array}
$$

Figure 2.18 Response of the system in Example 2.6 with impulse response $h(t)=u(t)$ to the input $x(t)=e^{-a t} u(t)$.

Sec. 2.3 Properties of Linear Time-Invariant Systems

Key concepts

(i) All of the LTI systems have the following properties: (a) linearity, (b) time invariance, (c) the commutative property, (d) the distributive property, and (e) the associative property.
(ii) Moreover, some of the LTI systems have the properties of (a) memory (or memoryless), (b) invertibility, (c) causality, and (d) stability.
(iii) Learn the definitions of (a) absolutely summable, (b) absolutely integrable, and (c) the unit step response.
(iv) Learn the change of the support after convolution.

Discrete-Time Linear Time-Invariant (LTI) System

$$
y[n]=\sum_{k=-\infty}^{+\infty} x[k] h[n-k]=x[n] * h[n]
$$

Continuous-Time Linear Time-Invariant (LTI) System

$$
y(t)=\int_{-\infty}^{+\infty} x(\tau) h(t-\tau) d \tau=x(t) * h(t)
$$

[Example 2.9]

$$
h[n]=\left\{\begin{array}{lc}
1, & n=0,1 \\
0, & \text { otherwise }
\end{array} \quad y[n]=x[n]^{*} h[n]=x[n]+x[n-1]\right.
$$

The following systems have the same impulse response (the same response when $x[n]=\delta[n])$ but not LTI.

$$
\begin{aligned}
& y[n]=(x[n]+x[n-1])^{2}, \\
& y[n]=\max (x[n], x[n-1]) .
\end{aligned}
$$

2.3.1 The Commutative Property

Discrete-Time

$$
\begin{aligned}
& x[n]^{*} h[n]=h[n] * x[n] \\
& \sum_{k=-\infty}^{+\infty} x[k] h[n-k]=\sum_{k=-\infty}^{+\infty} h[k] x[n-k],
\end{aligned}
$$

Continuous-Time

$$
\begin{aligned}
& x(t)^{*} h(t)=h(t)^{*} x(t) \\
& \int_{-\infty}^{+\infty} x(\tau) h(t-\tau) d \tau=\int_{-\infty}^{+\infty} h(\tau) x(t-\tau) d \tau .
\end{aligned}
$$

2.3.2 The Distributive Property

Discrete-Time

$$
x[n] *\left(h_{1}[n]+h_{2}[n]\right)=x[n] * h_{1}[n]+x[n] * h_{2}[n],
$$

Continuous-Time

$$
x(t) *\left(h_{1}(t)+h_{2}(t)\right)=x(t) * h_{1}(t)+x(t) * h_{2}(t)
$$

(a)
[Example 2.10]

$$
\begin{aligned}
& x[n]=\left(\frac{1}{2}\right)^{n} u[n]+2^{n} u[-n], \quad h[n]=u[n] . \\
& y[n]=x[n] * h[n]=y_{1}[n]+y_{2}[n] \\
& y_{1}[n]=\left(\frac{1}{2}\right)^{n} u[n] * h[n] \quad y_{2}[n]=2^{n} u[-n] * h[n]
\end{aligned}
$$

2.3.3 The Associative Property

Discrete-Time

$$
x[n] *\left(h_{1}[n] * h_{2}[n]\right)=\left(x[n] * h_{1}[n]\right) * h_{2}[n]
$$

Continuous-Time

$$
x(t) *\left[h_{1}(t) * h_{2}(t)\right]=\left[x(t)^{*} h_{1}(t)\right]^{*} h_{2}(t)
$$

2.3.4 LTI Systems with and without Memory

Discrete-Time
memoryless $\quad y[n]=K x[n]$

$$
\text { i.e., } \quad h[n]=0 \quad \text { when } n \neq 0
$$

Otherwise, the system has memory.
Continuous-Time
memoryless $\quad y(t)=K x(t)$

$$
\text { i.e., } \quad h(t)=0 \quad \text { when } t \neq 0
$$

Otherwise, the system has memory.

2.3.5 Invertibility of LTI Systems

Discrete-Time

If $h[n]$ is the impulse response of a discrete LTI system, then the system has the reversibility property if and only if there exists an $h_{1}[n]$ such that

$$
h[n] * h_{1}[n]=\delta[n]
$$

Continuous-Time
If $h(t)$ is the impulse response of a continuous LTI system, then the system has the reversibility property if and only if there exists an $h_{1}(t)$ such that

$$
h(t) * h_{1}(t)=\delta(t)
$$

[Example 2.11]

$$
\begin{gathered}
y(t)=x(t) * h(t)=x\left(t-t_{0}\right) \\
h(t)=\delta\left(t-t_{0}\right)
\end{gathered}
$$

If

$$
\begin{aligned}
& h_{1}(t)=\delta\left(t+t_{0}\right) \\
& y(t) * h_{1}(t)=y\left(t+t_{0}\right)=x(t) \\
& h(t) * h_{1}(t)=\delta(t)
\end{aligned}
$$

[Example 2.12]

$$
\text { If } \quad \begin{aligned}
& h[n]=u[n] \\
& \qquad y[n]=x[n] * h[n]=\sum_{m=-\infty}^{\infty} x[m] u[n-m]=\sum_{m=-\infty}^{n} x[m]
\end{aligned}
$$

When

$$
\begin{aligned}
& h_{1}[n]=\delta[n]-\delta[n-1] \\
& y[n] * h_{1}[n]=y[n]-y[n-1]=x[n] \\
& \quad h[n] * h_{1}[n]=\delta[n]
\end{aligned}
$$

2.3.6 Causality for LTI Systems

Discrete-Time

$$
\begin{aligned}
h[n] & =0 \quad \text { for } n<0 \\
y[n] & =\sum_{k=-\infty}^{n} x[k] h[n-k]=\sum_{k=0}^{\infty} h[k] x[n-k],
\end{aligned}
$$

Continuous-Time

$$
\begin{aligned}
& h(t)=0 \quad \text { for } t<0 \\
& y(t)=\int_{-\infty}^{t} x(\tau) h(t-\tau) d \tau=\int_{0}^{\infty} h(\tau) x(t-\tau) d \tau
\end{aligned}
$$

2.3.7 Stability for LTI Systems

Discrete-Time
If $|x[n]|$ is bounded, then $|y[n]|$ is also bounded.
Sufficient condition for a discrete-time LTI system to be stable

$$
\sum_{k=-\infty}^{+\infty}|h[k]|<\infty
$$

Continuous-Time
If $|x(t)|$ is bounded, then $|y(t)|$ is also bounded.
Sufficient condition for a continuous-time LTI system to be stable

$$
\int_{-\infty}^{+\infty}|h(\tau)| d \tau<\infty
$$

[Example 2.13]

$$
\begin{aligned}
& h[n]=\delta[n] \\
& h(t)=\delta(t) \\
& h[n]=u[n] \\
& h(t)=u(t)
\end{aligned}
$$

2.3.8 The Unit Step Response of an LTI System

Unit step response: The response when the input is $u[n]$ (or $u(t)$)

Discrete-Time
The unit step response $s[n]$ is

$$
s[n]=u[n] * h[n]=\sum_{k=-\infty}^{n} h[k]
$$

Therefore,$\quad h[n]=s[n]-s[n-1]$
Continuous-Time

$$
s(t)=u(t) * h(t)=\int_{-\infty}^{t} h(\tau) d \tau
$$

Therefore, $\quad h(t)=\frac{d s(t)}{d t}=s^{\prime}(t)$

2.3.9 Variation of Support and Length After Convolution

Support: A set of points where a function is nonzero.
Continuous-time case

If

$$
\begin{array}{ll}
x(t)=0 & \text { for } t<t_{1} \text { and } t>t_{2}, \\
x(t) \neq 0 & \text { for } t_{1}<t<t_{2}
\end{array}
$$

support: $\quad t \in\left(t_{1}, t_{2}\right)$
length: $\quad t_{2}-t_{1}$.

Support and Length Variation Property for Continuous-Time Convolution

If the support of $x(t)$ is $t \in\left(t_{1}, t_{2}\right)$
the support of $h(t)$ is $t \in\left(t_{3}, t_{4}\right)$

$$
y(t)=x(t) * h(t)
$$

then the support of $y(t)$ is equal to (or within)

$$
t \in\left(t_{1}+t_{3}, t_{2}+t_{4}\right)
$$

the length of $y(t)$ is

$$
L_{y}=t_{2}+t_{4}-t_{3}-t_{1}=L_{x}+L_{h} .
$$

Discrete-time case

If

$$
\begin{array}{ll}
x[n]=0 & \text { for } t<n_{1} \text { and } t>n_{2}, \quad n_{2}>n_{1} \\
x[n] \neq 0 & \text { for } n_{1}<t<n_{2},
\end{array}
$$

support: $\quad n \in\left[n_{1}, n_{2}\right]$
length: $\quad n_{2}-n_{1}+1$

Support and Length Variation Property for Discrete-Time Convolution

$$
\begin{array}{cl}
\text { If the support of } x[n] \text { is } & n \in\left[n_{1}, n_{2}\right] \\
\text { the support of } h[n] \text { is } & n \in\left[n_{3}, n_{4}\right]
\end{array}
$$

$$
y[n]=x[n] * h[n]
$$

then the support of $y[n]$ is equal to (or within)

$$
n \in\left[n_{1}+n_{3}, n_{2}+n_{4}\right]
$$

the length of $y[n]$ is

$$
L_{y}=n_{2}+n_{4}-n_{3}-n_{1}+1=L_{x}+L_{h}-1 .
$$

Sec. 2.4 Causal LTI Systems Described by Differential and Difference Equations

Key concepts

(i) when the initial conditions are all zero, a linear differential / difference equation is a linear system.
(ii) with the condition of initial rest, a linear differential / difference equation with constant coefficients is a linear time-invariant (LTI) system.
(iii) how to use block diagrams to represent a system

2.4.1 Linear Constant-Coefficient Differential Equations

[Example 2.14]

$$
\frac{d y(t)}{d t}+2 y(t)=x(t) \quad \text { where } \quad x(t)=K e^{3 t} u(t)
$$

Solution:

$$
\begin{aligned}
& y(t)=y_{p}(t)+y_{h}(t) \\
& y_{h}(t) \quad \text { is the solution of } \frac{d y(t)}{d t}+2 y(t)=0 \\
& y_{p}(t) \quad \text { is any the original solution } \\
& y_{h}(t)=A e^{s t} \quad y_{p}(t)=\frac{K}{5} e^{3 t}, \quad t>0
\end{aligned}
$$

A Linear Constant Coefficient Differential Equation with Initial Rest is Causal and LTI

If

$$
\sum_{k=0}^{N} a_{k} \frac{d^{k} y(t)}{d t^{k}}=\sum_{k=0}^{M} b_{k} \frac{d^{k} x(t)}{d t^{k}}
$$

and the system in initial rest

$$
y\left(t_{0}\right)=\frac{d y\left(t_{0}\right)}{d t}=\ldots=\frac{d^{N-1} y\left(t_{0}\right)}{d t^{N-1}}=0
$$

then the system is causal and LTI.

2.4.2 Linear Constant-Coefficient Difference Equations

A Linear Constant Coefficient Difference Equation with Initial Rest Is Causal and LTI

If

$$
\sum_{k=0}^{N} a_{k} y[n-k]=\sum_{k=0}^{M} b_{k} x[n-k]
$$

and the system in initial rest

$$
y\left[n_{0}-1\right]=y\left[n_{0}-2\right]=\ldots=y\left[n_{0}-N\right]=0 .
$$

then the system is causal and LTI.

2.4.3 Block Diagram Representations of First-Order Systems Described by Differential and Difference Equations

(a)

(b)
(c)

Figure 2.28 Block diagram representation for the causal discrete-time system described by eq. (2.126).

Figure 2.29 One possible set of basic elements for the block diagram representation of the continuous-time system described by eq. (2.128): (a) an adder; (b) multiplication by a coefficient; (c) a differentiator.

Figure 2.30 Block diagram representation for the system in eqs. (2.128) and (2.129), using adders, multiplications by coefficients, and differentiators.

Figure 2.31 Pictorial representation of an integrator.

Figure 2.32 Block diagram representation for the system in eqs. (2.128) and (2.131), using adders, multiplications by coefficients, and integrators.

$$
\begin{equation*}
y(t)=\int_{-\infty}^{t}[b x(\tau)-a y(\tau)] d \tau \tag{2.131}
\end{equation*}
$$

Sec. 2.5 Singularity Functions

Key concepts

(i) studying the property of the continuous unit impulse (summarized in TA Table 2.1);
(ii) studying the unit doublet and its property

2.5.1 The Unit Impulse as an Idealized Short Pulse

$$
x(t)=x(t) * \delta(t) \quad \text { when } x(t)=\delta(t) \quad \delta(t)=\delta(t) * \delta(t)
$$

$$
r_{\Delta}(t)=\delta_{\Delta}(t) * \delta_{\Delta}(t)
$$

$\left.\delta_{\Delta}(t)\right|_{\Delta \rightarrow 0}$ and $\left.\quad r_{\Delta}(t)\right|_{\Delta \rightarrow 0}$ can all be viewed as a unit impulse.
There is no explicit form of a unit impulse.
Instead, we can say some function behaves like a unit impulse

2.5.2 Defining the Unit Impulse through Convolution

We define $\delta(t)$ as the signal for which

$$
x(t)=x(t) * \delta(t)
$$

is satisfied.

2.5.3 Unit Doublets and Other Singularity Functions

Definition 2.6 Unit Doublet

$$
u_{1}(t)=\frac{d}{d t} \delta(t) \quad \frac{d}{d t} x(t)=x(t) * u_{1}(t)
$$

Figure 1.34

Figure 2.36 The derivative $d \delta_{\Delta}(t) / d t$ of the short rectangular pulse $\delta_{\Delta}(t)$ of Figure 1.34.

Self-convolution of the Unit Doublet

$$
\begin{array}{ll}
u_{2}(t)=u_{1}(t) * u_{1}(t)=\frac{d^{2}}{d t^{2}} \delta(t) & x(t) * u_{2}(t)=\frac{d^{2}}{d t^{2}} x(t) \\
u_{k}(t)=\underbrace{u_{1}(t) * \ldots * u_{1}(t)}_{k \text { times }}=\frac{d^{k}}{d t^{k}} \delta(t) & x(t) * u_{k}(t)=\frac{d^{k}}{d t^{k}} x(t)
\end{array}
$$

Unit Step Function

$$
u(t)=\int_{-\infty}^{t} \delta(\tau) d \tau, \quad x(t) * u(t)=\int_{-\infty}^{t} x(\tau) d \tau
$$

Self-Convolution of the Step Function

$$
\begin{aligned}
& u_{-2}(t)=u(t) * u(t)=\int_{-\infty}^{t} u(\tau) d \tau=t u(t) . \quad \text { (unit ramp function) } \\
& x(t)^{*} u_{-2}(t)=x(t)^{*} u(t) * u(t)=\int_{-\infty}^{t}\left(\int_{-\infty}^{\tau} x(\sigma) d \sigma\right) d \tau .
\end{aligned}
$$

Self-Convolution of the Step Function

$$
\begin{aligned}
& u_{-k}(t)=\underbrace{u(t) * \ldots * u(t)}_{k \text { times }}=\int_{-\infty}^{t} u_{-(k-1)}(\tau) d \tau=\frac{t^{k-1}}{(k-1)!} u(t) \\
& x(t)^{*} u_{-k}(t)=\int_{-\infty}^{t} \int_{-\infty}^{\tau_{k-1}} \cdots \int_{-\infty}^{\tau_{2}}\left(\int_{-\infty}^{\tau_{1}} x(\sigma) d \sigma\right) d \tau_{1} d \tau_{2} \cdots d \tau_{k-1} \\
& \delta(t)=u_{0}(t) \\
& u(t)=u_{-1}(t) \\
& u_{k}(t) * u_{r}(t)=u_{k+r}(t)
\end{aligned}
$$

Ta Table 2.1

Properties of the Continuous Unit Impulse and Other Singularity Functions

Property or Definition	Formula
(1) Integration	$\int_{-\infty}^{\infty} \delta(t) d t=1$
(2) Relation with the unit step function	$\int_{-\infty}^{t} \delta(\tau) d \tau=u(t), \quad \frac{d}{d t} u(t)=\delta(\tau)$
(3) Convolution	$x(t) * \delta(t)=x(t)$
(4) Auto convolution	$\delta(t) * \delta(t)=\delta(t), \quad \delta(t) * \delta(t) * \ldots . * \delta(t)=\delta(t)$
(5) Sifting (I)	$\int_{a}^{b} f(t) \delta\left(t-t_{0}\right) d t=f\left(t_{0}\right)$ if $a<t_{0}<b$
(6) Sifting (II)	$f(t) \delta\left(t-t_{0}\right)=f\left(t_{0}\right) \delta\left(t-t_{0}\right)$
(7) Unit doublet $u_{1}(t)$	$\begin{aligned} & u_{1}(t)=\frac{d}{d t} \delta(t) \\ & x(t) * u_{1}(t)=\frac{d}{d t} x(t) \end{aligned}$
(8) $u_{k}(t)(k$ is a positive integer $)$	$\begin{aligned} & u_{k}(t)=\underbrace{u_{1}(t) * \cdots * u_{1}(t)}_{k \text { times }}=\frac{d^{k}}{d t^{k}} \delta(t) \\ & x(t) * u_{k}(t)=\frac{d^{k}}{d t^{k}} x(t) \end{aligned}$
(9) $u_{-1}(t)$	$u_{-1}(t)=u(t)$,
(10) $u_{-k}(t)$ (k is a positive integer)	$\begin{aligned} & u_{-k}(t)=\underbrace{u(t) * \cdots * u(t)}_{k \text { times }}=\frac{t^{k-1}}{(k-1)!} u(t), \\ & x(t) * u_{-k}(t)=\int_{-\infty}^{t} \int_{-\infty}^{\tau_{k-1}} \cdots \int_{-\infty}^{\tau_{2}}\left(\int_{-\infty}^{\tau_{1}} x(\sigma) d \sigma\right) d \tau_{1} d \tau_{2} \ldots d \tau_{k-1} . \end{aligned}$ (k times of integration)
When $k=2$, it is called a unit ramp function	

Sec. 2.6 LTI Systems in the Multiple Dimensional Case

Key concepts

Learning
(i) the LTI system in the multiple dimensional case,
(ii) the impulse response in the multiple dimensional case,
(iii) the convolution operation in the multiple dimensional case,
(iv) how the range varies after performing multiple dimensional convolution

Multiple dimensional system

$$
x\left(t_{1}, t_{2}, \cdots, t_{N}\right) \rightarrow y\left(t_{1}, t_{2}, \cdots, t_{N}\right)
$$

Linear Multiple dimensional system

$$
\alpha x_{1}\left(t_{1}, t_{2}, \cdots, t_{N}\right)+\beta x_{2}\left(t_{1}, t_{2}, \cdots, t_{N}\right) \rightarrow \alpha y_{1}\left(t_{1}, t_{2}, \cdots, t_{N}\right)+\beta y_{2}\left(t_{1}, t_{2}, \cdots, t_{N}\right)
$$

if

$$
x_{1}\left(t_{1}, t_{2}, \cdots, t_{N}\right) \rightarrow y_{1}\left(t_{1}, t_{2}, \cdots, t_{N}\right) \quad \text { and } \quad x_{2}\left(t_{1}, t_{2}, \cdots, t_{N}\right) \rightarrow y_{2}\left(t_{1}, t_{2}, \cdots, t_{N}\right)
$$

Time-invariant multiple dimensional system

$$
x\left(t_{1}-d_{1}, t_{2}-d_{2}, \cdots, t_{N}-d_{N}\right) \rightarrow y\left(t_{1}-d_{1}, t_{2}-d_{2}, \cdots, t_{N}-d_{N}\right)
$$

A multiple dimensional linear and time-invariant (LTI) system can be expressed as a convolution form:

$$
y\left(t_{1}, t_{2}, \cdots, t_{N}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x\left(\tau_{1}, \tau_{2}, \cdots, \tau_{N}\right) h\left(t_{1}-\tau_{1}, t_{2}-\tau_{2}, \cdots, t_{N}-\tau_{N}\right) d \tau_{1} d \tau_{2} \cdots d \tau_{N}
$$

where $h\left(\tau_{1}, \tau_{2}, \cdots, \tau_{N}\right)$ is the response when the input is a multiple dimensional unit impulse:

$$
\begin{aligned}
& \delta\left(t_{1}, t_{2}, \cdots, t_{N}\right) \rightarrow h\left(t_{1}, t_{2}, \cdots, t_{N}\right) \\
& \text { where } \quad \delta\left(t_{1}, t_{2}, \cdots, t_{N}\right)=\delta\left(t_{1}\right) \delta\left(t_{2}\right) \cdots \delta\left(t_{N}\right)
\end{aligned}
$$

Multiple dimensional system

$$
x\left[n_{1}, n_{2}, \cdots, n_{N}\right] \rightarrow y\left[n_{1}, n_{2}, \cdots, n_{N}\right]
$$

Linear Multiple dimensional system

$$
\begin{aligned}
& \quad \alpha x_{1}\left[n_{1}, n_{2}, \cdots, n_{N}\right]+\beta x_{2}\left[n_{1}, n_{2}, \cdots, n_{N}\right] \rightarrow \alpha y_{1}\left[n_{1}, n_{2}, \cdots, n_{N}\right]+\beta y_{2}\left[n_{1}, n_{2}, \cdots, n_{N}\right] \\
& \text { if } \quad x_{1}\left[n_{1}, n_{2}, \cdots, n_{N}\right] \rightarrow y_{1}\left[n_{1}, n_{2}, \cdots, n_{N}\right] \text { and } \quad x_{2}\left[n_{1}, n_{2}, \cdots, n_{N}\right] \rightarrow y_{2}\left[n_{1}, n_{2}, \cdots, n_{N}\right]
\end{aligned}
$$

Time-invariant multiple dimensional system

$$
x\left[n_{1}-d_{1}, n_{2}-d_{2}, \cdots, n_{N}-d_{N}\right] \rightarrow y\left[n_{1}-d_{1}, n_{2}-d_{2}, \cdots, n_{N}-d_{N}\right]
$$

A multiple dimensional linear and time-invariant (LTI) system can be expressed as a convolution form:

$$
y\left[n_{1}, n_{2}, \cdots, n_{N}\right]=\sum_{k_{N}=-\infty}^{\infty} \cdots \sum_{k_{2}=-\infty}^{\infty} \sum_{k_{1}=-\infty}^{\infty} x\left[k_{1}, k_{2}, \cdots, k_{N}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}, \cdots, n_{N}-k_{N}\right]
$$

where $h\left[n_{1}, n_{2}, \ldots, n_{N}\right]$ is the response when the input is a multiple dimensional unit impulse:

$$
\delta\left[n_{1}, n_{2}, \cdots, n_{N}\right] \rightarrow h\left[n_{1}, n_{2}, \cdots, n_{N}\right]
$$

where $\quad \delta\left[n_{1}, n_{2}, \cdots, n_{N}\right]=\delta\left[n_{1}\right] \delta\left[n_{2}\right] \cdots \delta\left[n_{N}\right]$

[Example 2.17]

$$
\begin{aligned}
& x\left[n_{1}, n_{2}\right]=255 \text { for }\left|n_{1}\right| \leq 3 \text { and }\left|n_{2}\right| \leq 3, \quad x\left[n_{1}, n_{2}\right]=0 \quad \text { otherwise. } \\
& h[-1,0]=h[-1,-1]=h[0,-1]=1, \\
& h[1,0]=h[1,1]=h[0,1]=-1, \quad h\left[n_{1}, n_{2}\right]=0 \text { otherwise } \\
& y\left[n_{1}, n_{2}\right]=\sum_{k_{2}=-\infty}^{\infty} \sum_{k_{1}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]
\end{aligned}
$$

[Example 2.17]

	(a) $x\left[n_{1}, n_{2}\right]$								
	$n_{2}=-4$	-3	-2	-1	0	1	2	3	4
$n_{1}=-4$	0	0	0	0	0	0	0	0	0
$n_{1}=-3$	0	255	255	255	255	255	255	255	0
$n_{1}=-2$	0	255	255	255	255	255	255	255	0
$n_{1}=-1$	0	255	255	255	255	255	255	255	0
$n_{1}=0$	0	255	255	255	255	255	255	255	0
$n_{1}=1$	0	255	255	255	255	255	255	255	0
$n_{1}=2$	0	255	255	255	255	255	255	255	0
$n_{1}=3$	0	255	255	255	255	255	255	255	0
$n_{1}=4$	0	0	0	0	0	0	0	0	0

(b) $h\left[n_{1}, n_{2}\right]$

	$n_{2}=-2$	-1	0	1	2
$n_{1}=-2$	0	0	0	0	0
$n_{1}=-1$	0	2	1	0	0
$n_{1}=0$	0	1	0	-1	0
$n_{1}=1$	0	0	-1	-2	0
$n_{1}=2$	0	0	0	0	0

$y\left[n_{1}, n_{2}\right]=$
$\sum_{k_{2}=-\infty}^{\infty} \sum_{k_{1}=-\infty}^{\infty} x\left[k_{1}, k_{2}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}\right]$

	$n_{2}=-5$	-4	-3	-2	-1	0	1	2	3	4	5
$n_{1}=-5$	0	0	0	0	0	0	0	0	0	0	0
$n_{1}=-4$	0	510	765	765	765	765	765	765	255	0	0
$n_{1}=-3$	0	765	1020	765	765	765	765	765	0	-255	0
$n_{1}=-2$	0	765	765	0	0	0	0	0	-765	-765	0
$n_{1}=-1$	0	765	765	0	0	0	0	0	-765	-765	0
$n_{1}=0$	0	765	765	0	0	0	0	0	-765	-765	0
$n_{1}=1$	0	765	765	0	0	0	0	0	-765	-765	0
$n_{1}=2$	0	765	765	0	0	0	0	0	-765	-765	0
$n_{1}=3$	0	255	0	-765	-765	-765	-765	-765	-1020	-765	0
$n_{1}=4$	0	0	-255	-765	-765	-765	-765	-765	-765	-510	0
$n_{1}=5$	0	0	0	0	0	0	0	0	0	0	0

[Properties]

Except for that causality, memory/memoryless, and the unit step function are hard to define in the multiple dimensional case, other properties listed in Section 2.3 can also be applied to the multiple dimensional case.
stable

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty}\left|h\left(\tau_{1}, \tau_{2}, \cdots, \tau_{N}\right)\right| d \tau_{1} d \tau_{2} \cdots d \tau_{N}<\infty \\
& \sum_{k_{N}=-\infty}^{\infty} \cdots \sum_{k_{2}=-\infty}^{\infty} \sum_{k_{1}=-\infty}^{\infty}\left|h\left[k_{1}, k_{2}, \cdots, k_{N}\right]\right|<\infty
\end{aligned}
$$

[Support and Size]
If $x\left(t_{1}, t_{2}, \cdots, t_{N}\right)=0 \quad$ for $\quad t_{1}<a_{1}$ or $t_{1}>b_{1}, \quad t_{2}<a_{2}$ or $t_{2}>b$, \qquad $t_{N}<a_{N}$ or $t_{N}>b_{N}$ $x\left(t_{1}, t_{2}, \cdots, t_{N}\right) \neq 0 \quad$ for $\quad a_{1}<t_{1}<b_{1}, \quad a_{2}<t_{2}<b_{2}, \ldots \ldots, \quad a_{N}<t_{1}<b_{N}$.
support:

$$
\left\{\left(t_{1}, t_{2}, \ldots, t_{N}\right) \mid t_{1} \in\left(a_{1}, b_{1}\right), \quad t_{2} \in\left(a_{2}, b_{2}\right), \ldots ., t_{N} \in\left(a_{N}, b_{N}\right)\right\}
$$

size:

$$
S_{1} \times S_{2} \times \ldots \times S_{N} \quad \text { where } S_{n}=b_{n}-a_{n}, \quad n=1,2, \ldots, N
$$

[Support and Size after Convolution]

Suppose that

the support of $x\left(t_{1}, t_{2}, \ldots, t_{N}\right)$ is $\left\{\left(t_{1}, t_{2}, \ldots, t_{N}\right) \mid t_{1} \in\left(a_{1}, b_{1}\right), t_{2} \in\left(a_{2}, b_{2}\right), \ldots ., t_{N} \in\left(a_{N}, b_{N}\right)\right\}$ the support of $h\left(t_{1}, t_{2}, \ldots, t_{N}\right)$ is $\left\{\left(t_{1}, t_{2}, \ldots, t_{N}\right) \mid t_{1} \in\left(c_{1}, d_{1}\right), t_{2} \in\left(c_{2}, d_{2}\right), \ldots, t_{N} \in\left(c_{N}\right.\right.$, $\left.\left.d_{N}\right)\right\}$.
If

$$
y\left(t_{1}, t_{2}, \cdots, t_{N}\right)=\int_{-\infty}^{\infty} \cdots \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x\left(\tau_{1}, \tau_{2}, \cdots, \tau_{N}\right) h\left(t_{1}-\tau_{1}, t_{2}-\tau_{2}, \cdots, t_{N}-\tau_{N}\right) d \tau_{1} d \tau_{2} \cdots d \tau_{N}
$$

the support of $y\left(t_{1}, t_{2}, \ldots, t_{N}\right)$ is

$$
\left\{\left(t_{1}, t_{2}, \ldots, t_{N}\right) \mid t_{1} \in\left(a_{1}+c_{1}, b_{1}+d_{1}\right), t_{2} \in\left(a_{2}+c_{2}, b_{2}+d_{2}\right), \ldots \ldots, \quad t_{N} \in\left(a_{N}+c_{N}, b_{N}+d_{N}\right)\right\}
$$

the size of $y\left(t_{1}, t_{2}, \ldots, t_{N}\right)$ is

$$
\left(S_{1}+T_{1}\right) \times\left(S_{2}+T_{2}\right) \times \ldots \times\left(S_{N}+T_{N}\right) \quad\left(S_{n}=b_{n}-a_{n}\right)
$$

[Support and Size]

$$
\text { If } \begin{aligned}
x\left[n_{1}, n_{2}, \cdots, n_{N}\right]=0 \quad \text { for } \quad & n_{1}<a_{1} \text { or } n_{1}>b_{1}, \quad n_{2}<a_{2} \text { or } n_{2}>b, \ldots \ldots \ldots \ldots, \\
& n_{N}<a_{N} \text { or } n_{N}>b_{N}
\end{aligned} \quad \begin{aligned}
& \text { for } \quad a_{1}<n_{1}<b_{1}, \quad a_{2}<n_{2}<b_{2}, \ldots \ldots, \quad a_{N}<n_{1}<b_{N} .
\end{aligned}
$$

support:

$$
\left\{\left(n_{1}, n_{2}, \ldots, n_{N}\right) \mid n_{1} \in\left[a_{1}, b_{1}\right], \quad n_{2} \in\left[a_{2}, b_{2}\right], \quad \ldots ., \quad n_{N} \in\left[a_{N}, b_{N}\right]\right\}
$$

size:

$$
S_{1} \times S_{2} \times \ldots \times S_{N} \quad \text { where } S_{n}=b_{n}-a_{n}+1, \quad n=1,2, \ldots, N
$$

[Support and Size after Convolution]
Suppose that
the support of $x\left[n_{1}, n_{2}, \ldots, n_{N}\right]$ is $\left\{\left[n_{1}, n_{2}, \ldots, n_{N}\right] \mid n_{1} \in\left(a_{1}, b_{1}\right), n_{2} \in\left(a_{2}, b_{2}\right), \ldots ., n_{N} \in\left(a_{N}, b_{N}\right)\right\}$
the support of $h\left[n_{1}, n_{2}, \ldots, n_{N}\left[\right.\right.$ is $\left\{\left[n_{1}, n_{2}, \ldots, n_{N}\right] \mid n_{1} \in\left(c_{1}, d_{1}\right), n_{2} \in\left(c_{2}, d_{2}\right), \ldots ., n_{N} \in\left(c_{N}, d_{N}\right)\right\}$.

If

$$
y\left[n_{1}, n_{2}, \cdots, n_{N}\right]=\sum_{k_{N}=-\infty}^{\infty} \cdots \sum_{k_{2}=-\infty}^{\infty} \sum_{k_{1}=-\infty}^{\infty} x\left[k_{1}, k_{2}, \cdots, k_{N}\right] h\left[n_{1}-k_{1}, n_{2}-k_{2}, \cdots, n_{N}-k_{N}\right]
$$

the support of $y\left[n_{1}, n_{2}, \ldots, n_{N}\right]$ is

$$
\left\{\left[n_{1}, n_{2}, \ldots, n_{N}\right] \mid n_{1} \in\left[a_{1}+c_{1}, b_{1}+d_{1}\right], n_{2} \in\left[a_{2}+c_{2}, b_{2}+d_{2}\right], \quad \ldots \ldots, \quad n_{N} \in\left[a_{N}+c_{N}, b_{N}+d_{N}\right]\right\}
$$

the size of $y\left[n_{1}, n_{2}, \ldots, n_{N}\right]$ is

$$
\begin{array}{ll}
\left(S_{n}=b_{n}-a_{n}+1\right) \\
\left(S_{1}-1\right) \times\left(S_{2}+T_{2}-1\right) \times \ldots \times\left(S_{N}+T_{N}-1\right) & \left(T_{n}=d_{n}-c_{n}+1\right)
\end{array}
$$

[Support and Size after Convolution]
For [Example 2.17]
the support of $x\left[n_{1}, n_{2}\right]$

$$
\begin{gathered}
\left\{\left[n_{1}, n_{2}\right] \mid n_{1} \in[-3,3], n_{2} \in[-3,3]\right\} \\
\text { size: } 7 \times 7
\end{gathered}
$$

the support of $h\left[n_{1}, n_{2}\right]$

$$
\left\{\left[n_{1}, n_{2}\right] \mid n_{1} \in[-1,1], n_{2} \in[-1,1]\right\}
$$

size: 3×3
the support of $y\left[n_{1}, n_{2}\right]=x\left[n_{1}, n_{2}\right] * h\left[n_{1}, n_{2}\right]$ is within

$$
\left\{\left[n_{1}, n_{2}\right] \mid n_{1} \in[-3-1,3+1]=[-4,4], n_{2} \in[-3-1,3+1]=[-4,4]\right\} .
$$

the size of $y\left[n_{1}, n_{2}\right]$

$$
(7+3-1) \times(7+3-1)=9 \times 9
$$

Sec. 2.7 Several Well-known LTI Systems

Key concepts

Learning some well-known LTI systems, including
(i) difference and accumulation,
(ii) edge detection, and
(iii) smother and local average

- delay (continuous time)

$$
x(t) * \delta\left(t-t_{0}\right)=x\left(t-t_{0}\right)
$$

- delay (discrete time)

$$
x[n] * \delta\left[n-n_{0}\right]=x\left[n-n_{0}\right]
$$

- differentiation

$$
x(t) * u_{1}(t)=\frac{d}{d t} x(t) \quad x(t) * u_{k}(t)=\frac{d^{k}}{d t^{k}} x(t)
$$

- difference

$$
x[n] *(\delta[n]-\delta[n-1])=x[n]-x[n-1]
$$

- integral

$$
\begin{aligned}
& x(t) * u_{-1}(t)=\int_{-\infty}^{t} x(\sigma) d \sigma \\
& x(t) * u_{-k}(t)=\int_{-\infty}^{t} \int_{-\infty}^{\tau_{k-1}} \cdots \int_{-\infty}^{\tau_{2}}\left(\int_{-\infty}^{\tau_{1}} x(\sigma) d \sigma\right) d \tau_{1} d \tau_{2} \cdots d \tau_{k-1}
\end{aligned}
$$

- accumulation

$$
y[n]=\sum_{m=-\infty}^{n} x[m]
$$

Edge Detection

$$
x[n] * h[n]
$$

where $h[n]$ satisfies
(i) $h[n]=-h[-n]$ for all n, i.e., $h[n]$ is odd,
(ii) $h[n] \rightarrow 0$ when $|n|$ is large,
(iii) $|h[n]|$ is larger when n is around zero.
$|h[n]|$ tends to decaying with $|n|$.

Example

$$
\begin{array}{ccccc}
h_{1}[-1]=1 / \sqrt{2}, \quad h_{1}[1]=-1 / \sqrt{2},
\end{array} \text { or } \quad
$$

Edge Detection (short impulse response)
(a) A rectangular signal $x_{1}[n]$;
(c) $x_{1}[n] * h_{1}[n]$

(b) $x_{2}[n]=x_{1}[n]+$ noise;

(c)

(d) $x_{2}[n] * h_{1}[n]$

$$
\begin{gathered}
h_{1}[-1]=1 / \sqrt{2}, \quad h_{1}[1]=-1 / \sqrt{2}, \\
h_{1}[n]=0 \text { otherwise }
\end{gathered}
$$

(a) A rectangular signal $x_{1}[n]$;

(b) $x_{2}[n]=x_{1}[n]+$ noise;

$$
\begin{array}{ccc}
h_{2}[1]=8 / \sqrt{260}, \quad h_{2}[2]=6 / \sqrt{260}, \quad h_{2}[3]=4 / \sqrt{260}, \\
h_{2}[4]=3 / \sqrt{260}, \quad h_{2}[5]=2 / \sqrt{260}, & h_{2}[6]=1 / \sqrt{260}, \\
h_{2}[n]=-h_{2}[-n] \quad \text { for } n=-1,-2,-3,-4,-5, & -6, \quad h_{2}[n]=0 \text { otherwise. }
\end{array}
$$

Edge Detection (Two-Dimensional Case)

$$
x\left[n_{1}, n_{2}\right] * h\left[n_{1}, n_{2}\right]
$$

where $h\left[n_{1}, n_{2}\right]$ satisfies
(i) $h_{1}\left[n_{1}, n_{2}\right]=-h\left[-n_{1},-n_{2}\right] \quad$ for all n_{1}, n_{2}
(ii) $h_{1}\left[n_{1}, n_{2}\right] \rightarrow 0 \quad$ when $\sqrt{n_{1}^{2}+n_{2}^{2}}$ is large,
(iii) $\left|h\left[n_{1}, n_{2}\right]\right| \geq\left|h\left[c n_{1}, c n_{2}\right]\right| \quad$ if $c>1$ and $\left[n_{1}, n_{2}\right] \neq[0,0]$.

Example:

$$
h\left[n_{1}, n_{2}\right]=\left[\begin{array}{ccc}
1 & 0 & -1 \\
a & 0 & -a \\
1 & 0 & -1
\end{array}\right] \quad \text { for }-1 \leq n_{1} \leq 1 \text { and }-1 \leq n_{2} \leq 1
$$

Edge Detection (Two-Dimensional Case)

Example:

$$
\begin{array}{ll}
h\left[n_{1}, n_{2}\right]=\left[\begin{array}{ccc}
1 & 0 & -1 \\
a & 0 & -a \\
1 & 0 & -1
\end{array}\right] & h\left[n_{1}, n_{2}\right]=\left[\begin{array}{ccc}
1 & a & 1 \\
0 & 0 & 0 \\
-1 & -a & -1
\end{array}\right] \\
\text { (horizontal edge detection) } & \text { (vertical edge detection) }
\end{array}
$$

$h\left[n_{1}, n_{2}\right]=\left[\begin{array}{ccc}0 & 1 & a \\ -1 & 0 & 1 \\ -a & -1 & 0\end{array}\right]$
(45 ${ }^{\circ}$ edge detection)
$h\left[n_{1}, n_{2}\right]=\left[\begin{array}{ccc}a & 1 & 0 \\ 1 & 0 & -1 \\ 0 & -1 & -a\end{array}\right]$
(135° edge detection)

Edge Detection (Two-Dimensional Case)
(a) $x\left[n_{1}, n_{2}\right]$
input

	$n_{2}=-4$	-3	-2	-1	0	1	2	3	4
$n_{1}=-4$	0	0	0	0	0	0	0	0	0
$n_{1}=-3$	0	255	255	255	255	255	255	255	0
$n_{1}=-2$	0	255	255	255	255	255	255	255	0
$n_{1}=-1$	0	255	255	255	255	255	255	255	0
$n_{1}=0$	0	255	255	255	255	255	255	255	0
$n_{1}=1$	0	255	255	255	255	255	255	255	0
$n_{1}=2$	0	255	255	255	255	255	255	255	0
$n_{1}=3$	0	255	255	255	255	255	255	255	0
$n_{1}=4$	0	0	0	0	0	0	0	0	0

(a)
output
$h\left[n_{1}, n_{2}\right]=\left[\begin{array}{lll}1 & 0 & -1 \\ 2 & 0 & -2 \\ 1 & 0 & -1\end{array}\right]$

	$n_{2}=-5$	-4	-3	-2	-1	0	1	2	3	4	5
$n_{1}=-5$	0	0	0	0	0	0	0	0	0	0	0
$n_{1}=-4$	0	255	255	0	0	0	0	0	-255	-255	0
$n_{1}=-3$	0	765	765	0	0	0	0	0	-765	-765	0
$n_{1}=-2$	0	1020	1020	0	0	0	0	0	-1020	-1020	0
$n_{1}=-1$	0	1020	1020	0	0	0	0	0	-1020	-1020	0
$n_{1}=0$	0	1020	1020	0	0	0	0	0	-1020	-1020	0
$n_{1}=1$	0	1020	1020	0	0	0	0	0	-1020	-1020	0
$n_{1}=2$	0	1020	1020	0	0	0	0	0	-1020	-1020	0
$n_{1}=3$	0	765	765	0	0	0	0	0	-765	-765	0
$n_{1}=4$	0	255	255	0	0	0	0	0	-255	-255	0
$n_{1}=5$	0	0	0	0	0	0	0	0	0	0	0

Edge Detection (Two-Dimensional Case)

Edge Detection (Two-Dimensional Case)

Smoother

$$
y[n]=x[n] * h[n]
$$

(i) $h[n]=h[-n], \quad$ (i.e., $h[n]$ is even),
(ii) $h[n] \rightarrow 0 \quad$ when $|n|$ is large,
(iii) $\left|h\left[n_{1}\right]\right| \geq\left|h\left[n_{2}\right]\right| \quad$ if $\left|n_{1}\right|<\left|n_{2}\right|$,
(iv) $\sum_{n=-\infty}^{\infty} h[n]=1$,
(v) $h[n] \geq 0 \quad$ for all n.

Example

$$
\begin{array}{ll}
h[n]=\frac{1}{2 L_{1}+1} \quad \text { for }-L_{1} \leq n \leq L_{1}, \quad h[n]=0 \quad \text { otherwise } \\
y[n]=x[n] * h[n]=\frac{1}{2 L_{1}+1} \sum_{m=n-L_{1}}^{n+L_{1}} x[m] \quad \text { (local average) }
\end{array}
$$

Smoother
Example

$$
\begin{gathered}
h[0]=0.2, h[1]=h[-1]=0.16, h[2]=h[-2]=0.12, h[3]=h[-3]=0.08, \\
h[4]=h[-4]=0.04, h[n]=0 \quad \text { otherwise. }
\end{gathered}
$$

$$
x[n]=0.05(n-20)+\text { noise }
$$

Sec. 2.8 Summary

- In this chapter, we have developed the representations for LTI systems by convolution operations, both in discrete time and in continuous time.
- LTI systems can be analyzed by the Fourier series (FS), the Fourier transform (FT), the Laplace transform (LT), and the z -transform (ZT).

Unbounded/Non-convergent

LT	CT	$\underline{\text { (Chap 9) }}$
ZT	DT	$\underline{\text { (Chap 10) }}$

Sec. 2.9 Further Reading

Matlab for convolution

$$
\begin{aligned}
& y=\operatorname{conv}(x, h) . \\
& y=\operatorname{conv} 2(x, h), \quad y=\operatorname{convn}(x, h) .
\end{aligned}
$$

Processing an audio file

$$
\begin{aligned}
& {[\mathrm{x}, \mathrm{fs}]=\text { audioread(‘filename'); \% read }} \\
& \text { audiowrite('filename', x, fs); \% create an audio file } \\
& \text { sound(x, fs); \% play }
\end{aligned}
$$

x : a column vector or two column vectors (stereophonic case)

Processing an image file
$\mathrm{x}=$ double(imread('filename')); \% read imwrite(x, 'filename'); \% create an image file image(x); or imagesc(x); \% display image(x); colormap(gray(256)); \% display a gray-level image
x: a matrix (gray level image) or three matrices (color image)

Processing a video file

```
OBJ = VideoReader('****.mp4`); % read
x = read(OBJ);
x = double(x);
```

vidObj $=$ VideoWriter('test.avi'); \% create a video file open(vidObj);
writeVideo(vidObj, x);
close(vidObj)
implay(‘filename'); or implay(x, nf); display

