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A position multiplexing method based on the modified Gerchberg-Saxton algorithm (MGSA) 

and a cascaded phase modulation scheme in the Fresnel transform domain is proposed in the 

multiple-image-encryption framework. First of all, each plain image is encoded into a complex 

function using the MGSA. The phase components of the created complex functions are then 

multiplexed with different position parameters, and summed. The phase part of the summation 

result is recorded in the first phase-only mask (POM). The MGSA is applied on the amplitude 

part of the summation result to determine another phase only function which is then recorded in 

the second POM. The simulation results show that the crosstalk between multiplexed images is 

significantly reduced compared with an existing similar method [20]. Therefore, the multiplexing 

capacity in encrypting multiple grayscale images can be increased accordingly. 
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1. Introduction 
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Optical image encryption techniques have played an important role in optical information 

processing. Many algorithms and architectural implementations for optical image encryption 

have been proposed for their multi-parameter selection, high speed, and high parallelism in 

various applications [1-6]. Since Réfrégier and Javidi first proposed the double random phase 

encoding (DRPE) algorithm in 1995 [1], subsequent optical encryption methods based on the 

Fourier transform (FT) [1], Fresnel transform (FrT) [7, 8], or fractional Fourier transform (FrFT) 

[9-11] have focused on encoding information using this algorithm. Only the correct phase keys 

and system parameters can recover the plain image in decryption. Since DRPE has prevailed 

with much interest, many studies focused on the related applications [1-12]. The DRPE 

architecture in optical image encryption technique uses two random phase keys: The first key is 

placed in the input domain and the second in the Fourier domain. If the two random phase keys 

are generated using two statistically independent functions and become two noise-like 

distributions, the encrypted image can also be as random as stationary white noise. The major 

advantage of DRPE is that it can be easily implemented with a 4-f optical architecture. 

After that, Wang et al. [4] proposed an alternative approach that iteratively encodes the 

original image into a phase-only mask (POM) in the Fourier plane of a 4-f correlator. This 

method was modified by Li et al. [13] to encrypt the image into a single POM in the input plane 

for convenient arrangement in applications, and by Chang et al. [14] into two POMs in both 

planes for higher recovered quality and security. The computer generated POM(s) can also be 

used as security system keys. Instead of placing one of the POMs in the Fourier plane, Situ and 

Zhang developed a lensless optical image encryption method in which the second POM can be 

located at any position in the Fresnel plane [7, 15] and thus remove the requirement for lenses in 

the 4-f Fourier optical system. It is difficult for intruders to directly retrieve the key phase 

distribution because of its novel encoding algorithm property [7, 15].  
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Compared with previous studies, the technique that iteratively encodes the original image 

into a POM system has three main significant advantages: First, it is lensless and therefore can 

minimize the number of optical components such as lenses and is easy to implement. Second, 

except for the native random noise-like distribution function property encoded in POMs which 

can serve as the main keys, two additional keys (wavelength and position parameters) can 

consequently achieve higher security. Finally, the encrypted data can be directly transmitted via 

communication lines and the decryption process achieved using the correct wavelength and the 

position parameters at the legitimate receiver.  

A multiple-image case has been developed in addition to single image encryption. Many 

studies have been exploited multiple-image optical encryption. For example, the random phase 

matching [16], spread-space spread-spectrum multiplexing [17], multichannel encryption [18], 

and frequency domain truncation schemes [26].  Recently, Situ and Zhang proposed two optical 

multiple-image multiplexing methods which employed the wavelength and position multiplexing 

techniques [19, 20]. Although the architecture can be easily implemented, however, annoy 

crosstalk inevitably exists in the decrypted results. Thus the number of total encrypted images is 

limited. Hence Situ and Zhang did not suggest encrypting multiple grayscale images in their 

methods because the quality of the decrypted images would be worse than that of binary images 

due to the obvious crosstalk [19, 20].  

In our previous study [25], a novel method of position multiplexing for the multiple-image 

encryption based on the modified Gerchberg-Saxton algorithm (MGSA) [24] is proposed to 

solve the above problems. In this paper, we propose a new system architecture in which one 

more POM is utilized in the Fresnel transform domain to increase the security level. In addition 

to only using the phase function retrieved from the MGSA, the amplitude and phase information 
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of the light field propagated from the other phase function under a given distance in between is 

also considered. Therefore, much more information is required to correctly decrypt the 

multiplexed images and thus the system security can be enhanced.  

 

2. Gerchberg-Saxton algorithm and the modified Gerchberg-Saxton algorithm  

The conventional Gerchberg-Saxton algorithm (GSA) is generally employed to reconstruct 

the lost phases if the corresponding intensities at their respective optical planes are known [21-

23]. Figure 1(a) shows a block diagram of the conventional GSA. The measured intensity in the 

Fourier domain must be the FT of the known intensity in the object domain. It is often sufficient 

to retrieve the phase distribution iψ from one of the two optical planes via GSA because the 

phase distribution oψ on the other plane can be obtained by performing a FT on the signal in the 

retrieved plane. The GSA algorithm iteratively performs FTs back and forth between the object 

and the Fourier domains. It also sets the measured data or prescribed constraints into each 

domain in Fig. 1(a). The GSA was often applied to two-dimensional signal applications and also 

the one-dimensional ones.  

Rather than recovering the lost phase information between two intensities on the spatial and 

Fourier domains, we adopted the MGSA [24] based on the GSA with intent to generate pure 

phase distributions 2 2( , )H x yψ  and 1 1( , )T x yψ  with a faster iteration process from the two 

independent prescribed intensities 2 2( , )H x y  and 1 1( , )T x y , as shown in Fig. 1(b). The difference 

between the GSA and MGSA is that at the beginning of the iteration process, the source intensity 

2 2( , )H x y  in the MGSA is not constrained to the intensity of the inverse Fourier transform (IFT) 

of the target image 1 1( , )T x y , while in the GSA the IFT relationship must be obeyed. For 
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example, an arbitrary image 2 2( , )H x y  and a prescribed intensity 1 1( , )T x y  can be chosen as the 

host and target images, respectively, in the data embedding procedure. That is, the target image 

1 1( , )T x y is not obliged to be defined as the FT of the image 2 2( , )H x y . As shown in Fig. 1(b), 

instead of using the FT and IFT, the MGSA can also be performed using the FrT and IFrT [24, 

25], respectively. Then involving the two images 1 1( , )T x y and 2 2( , )H x y  into the MGSA, a 

desired approximation image 1 1
ˆ( , )T x y  shown in Fig. 1(b) can be obtained. When the required 

correlation/similarity between the target image 1 1( , )T x y  and the approximation image 1 1
ˆ( , )T x y  

is reached (for example, the correlation coefficient ρ  achieves a predefined value), the resultant 

phase distributions 22( , )H x yψ  and 1 1( , )T x yψ in the input and output domains can be obtained 

[24], respectively. Consequently, any two arbitrary independent images can be imposed on 

building the FT and IFT (or FrT and IFrT) relationships in the MGSA. The mathematical 

derivation of Fig. 1(b) in the optical FT domain is 
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where λ  is the wavelength of the incident plane wave and z  represents the distance between the 

input spatial domain 2 2( , )x y  and output frequency domain 1 1( , )x y . If a POF 2 2( , )H x yψ is 

required, the image 2 2( , )H x y  constraint of a unity amplitude ( 1 1( , ) 1H x y = ) is used in the 

MGSA to generate the phase distribution 2 2( , )H x yψ , which is then written into a POM. On the 

other hand, the phase distribution 1 1( , )T x yψ  contributes one of the components, which is then 

written into the other POM. The detailed discussions will be given in the next section.  

 

3. The proposed method  

The optical architecture of the lensless Fresnel diffraction is employed in the proposed 

system. Figure 2 shows the system configuration of the proposed double-POF-based multiple-

image encryption method, in which one POF is located between the input 2 2( , )x y and filter 

1 1( , )x y  planes and the other is located between the filter 1 1( , )x y and output 0 0( , )x y  planes. In 

retrieving the POFs in the lensless Fresnel diffraction scheme, the MGSA [21, 22] based on the 

FrT [24] is used. To reduce the annoying crosstalk [19, 20] in the encryption of grayscale or 

color images, the retrieved phase functions for all images to be encrypted are then modulated to 

determine the two POFs. 

The proposed method for multiple-image encryption with position multiplexing is 

implemented using the cascaded POFs recorded on the two POMs, respectively. Figure 3 

illustrates a systematic block diagram of the proposed method. Firstly, N individual images 

{ 0 0( ,  )ng x y | n = 1, 2, 3,…, N} is encrypted as to its corresponding phase functions { 1 1( , )
nz x yψ | 

n = 1, 2, 3,…, N} in accordance with different lateral positions { nz , n = 1, 2, 3,…, N} of the 
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incident plane wave based on the MGSA shown in Fig. 1(b). That is, each phase function 

1 1( , )
nz x yψ  satisfies 

{ } ˆ1 1 0 0 0 0ˆFrT exp ( , ) ; ; = ( , ) exp ( , ) ,
n n

z z
z n n gj x y z g x y j x yψ λ ψ⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦      (3) 

where ˆ 0 0( , )
n

z
g x yψ  is the accompanied phase term for each image 0 0( ,  )ng x y . These N position-

specific phase functions, { 1 1( , )
nz x yψ | n = 1, 2, 3,…, N} can be summed and then recorded 

together into a single POF. Each target image 0 0( ,  )ng x y  can then be extracted or recovered from 

the POF as the approximation image 0 0ˆ ( , )z
ng x y  in Eq. (3). However, the crosstalk between a 

specifically reconstructed image 0 0ˆ ( , )z
kg x y  and the other reconstructed images { 0 0ˆ ( , )z

ng x y | n = 

1, 2, 3,…, N, n≠k} makes the error perceivable, even the position key kz  for deciphering is 

correct. To reduce the annoying crosstalk, therefore, the approximation images { 0 0ˆ ( , )z
ng x y  | n = 

1, 2, 3,…, N} are spatially translated into different positions using the phase modulation property 

of FrT:  
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 and 0 0( , )x yω  is the accompanied phase term, and nμ  and nν  denote the respective shifting 

distances of 0 0ˆ ( , )z
ng x y  in the 0x  and 0y  directions, respectively, at the output plane. The 

crosstalk can be significantly reduced with a proper arrangement of the shifting distance μn and 

νn. For example, the differences between two consecutive distances (μi and μi+1 or νi and 

νi+1) should be at least greater than the width Dw and the height Dh of the target image to prevent 
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the possible overlap between two adjacent images. 

To synthesize a POF that can achieve multiple-image encryption, the phase functions 

1 1{ ( , ) | 1, 2,3,..., }
nz x y n Nψ ′ =  obtained from Eq. (5) are summed to yield the total phase function 

T 1 1exp ( , )zj x yψ⎡ ⎤⎣ ⎦ : 
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multiple-image multiplexing encryption system security, another POF is written into 2POM . The 

amplitude T 1 1( , )zA x y  is encoded into the phase function 2 2( , )x yφ  by again using the MGSA with 

setting H(x2, y2)=1 and applying IFrT to the target image T 1 1( , )zA x y . The phase function 

2 2( , )x yφ satisfies 

[ ]{ } [ ]2 2 1 T 1 1 1 1
ˆFrT exp ( , ) ; ; = ( , ) exp ( , ) ,zj x y z A x y j x yφ λ ϕ′  (7) 

where λ  denotes the wavelength of an incident plane wave and 1z′  represents a distance between 

the input (POM2) and filter (POM1) planes.  

In the final step, the phase functions 2 2( , )x yφ  and 1 1 T 1 1( , ) ( , )zx y x yϕ ψ− +  are recorded into 

2POM and 1POM , respectively. The multiple-image decryption process for the position 

multiplexing case under a specific wavelength λ  (shown in Fig. 3) can be expressed as 
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where 1 1( , )
nzn x y  represents the crosstalk, which is located at the coordinate 0 0( , )x y and derived 

from deciphering the remaining images with incorrect keys. Note that the approximation holds if 

the two terms are spatially separated enough. That is, the consecutive distances in both the 

horizontal or vertical directions should be at least greater than the width and height of the target 

image, respectively. The proposed method based on Eq. (8) can recover the encrypted 

images 0 0ˆ{ ( , ) | 1, 2,3,..., }z
ng x y n N= , with different position parameters zn and spatial translations 

),( nn νμ  to artfully avoid crosstalk 0 0( , )
nzn x y .  

The computational and algorithmic complexity of the proposed method in the encoding 

stage depends on several factors: First of all, the POF of each of the multiplexed images is 

extracted using the MGSA, in which both the FrFT and IFrFT are required for each iteration step. 

For the images of size B x B, the computation complexity of performing discrete FrFT and IFrFT 
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based on the 2D fast Fourier transform (FFT) has been shown to be O(B2 log2B2) [27]. To achieve 

high correlation coefficient between the original and recovered images, the iteration number is 

set at 100. The computation load depends directly on the image size and the iteration number. 

Therefore, there are N-time computation load for N images. The N POFs are separately 

modulated using Eqs. (4) and (5) for the multiplexing purpose. The N POFs are finally 

summarized to obtain a complex function, in which the amplitude part is used to extract another 

POF in the POM1 by again using an iteration process in the MGSA. The most time consuming 

part in the above factors is the FrFT and IFrFT of the image in the spatial and frequency domains 

in the MGSA, respectively.  

 

4. Simulation results 

Computer simulations are performed to verify the proposed method. A personal computer 

with Intel Core2 Duo CPU T6600@2.20GHz  and 2G DRAM, and the coding language 

MATLAB 2010b is used to perform the computer simulation. Figure 4 shows nine original 

grayscale images of size 64 64×  pixels. The size of the POFs is 5 mm 5 mm× in the simulation. 

In the proposed position multiplexing scheme, a fixed position 1 0.25z′ = m, fixed wavelength 

632.8 nmλ = , and the variable positions 0.25 0.05  mnz n= + , n=1, …, 9, are adopted. Figures 

5(a) and 5(b) show the noise-like POFs recorded in 1POM  and 2POM , respectively, determined 

using Eqs. (3)-(7). 

Consider the case of choosing the position parameter 3 0.4 mz = in the input plane. Figures 

6(a) and 6(b) show the entire decrypted result in the reconstruction plane and the magnified 

version of the image 3 1 1ˆ ( , )zg x y  corresponding to the original image 3 1 1( , )g x y in Fig. 4, 

respectively. Another case of using the position parameter 6 0.55 mz =  in Figs. 6(c) and 6(b) 
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show the entire decrypted result in the reconstruction plane and the magnified version of the 

image 6 1 1ˆ ( , )zg x y  corresponding to the original image 6 1 1( , )g x y  in Fig. 4, respectively. Compared 

to the original 3 1 1( , )g x y  with Fig. 6(b) and the original 6 1 1( , )g x y  with Fig. 6(d), the 

corresponding correlation coefficients are ρ =0.875 and ρ =0.885, respectively. The shift 

amounts are designated to be (μn, νn) = (αDw, βDh), where α and β are integers within the range 

[ 3,  3]−  and Dw and Dh are the width and height of the original image, respectively.  

Figure 7 shows a comparison result of the correlation coefficient between the original and the 

decrypted images for the proposed method and the method in Ref. [20], which is also a position 

multiplexing scheme. The advantages of the proposed method are twofold: First, low crosstalk in 

position multiplexing for the multiple-image encryption technique can be achieved to increase 

the multiplexing capacity substantially. Second, the lensless optical architecture with Fresnel 

transform increases the security level for the encryption purpose.  

As we mention in Section 2, the computation complexity depends mainly on the number 

and the size of the multiplexed images. In performing a computer simulation of nine test images 

encryption and decryption, the program execution times in several stages of the proposed method 

are given as follows: (1) 316.77 seconds for the phase extraction of nine test images using the 

MGSA; (2) 9.01 seconds for performing the spatial translation and the phase summarization 

process; (3) 37.69 seconds for transforming the amplitude part in Eq. (6) to the phase function 

which will be sent to POM2; (4) 364.59 seconds for the whole encryption process; (6) 1.11 

seconds for decrypting one of the nine original images. 

The resolution of the phase signals in the two POMs is limited in actual optical 

implementation. That is, only a finite bit number can be used to represent the phase signals. 

Therefore, the POFs are quantized with a finite bit number and the errors induced by this 
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quantization should be investigated as well.  Figure 8 shows the quantization effects on the POFs. 

The reconstructed images are with good quality with eight-bit quantization. The correlation 

coefficients decrease to be less than 0.8 when the number of encrypted images is nine. If the 

eight-bit quantization is employed, the correlation coefficients dramatically reduce to less than 

0.6, which is not acceptable image quality. Therefore, at least seven-bit resolution is suggested in 

representing the POFs in the two POMs. 

In addition to the quantization effects, the misalignment effects caused by the position 

shifting of z1’ between the two POMs should also be considered. In the encryption stage of the 

proposed method, determination of the two POFs is performed using digital methods. If the 

decryption stage is implemented using optics, the distance parameter could be distorted due to 

the possible misalignment between two POMs. If the distance z1 is not identical to that in the 

encryption stage, the reconstructed image quality will be degraded. Figure 9 shows the 

misalignment effects caused by the position shifting of z1’ between the two POMs. The shifting 

distance range is from 0.006 m to -0.006 m. As shown in this figure, the correlation coefficients 

gradually decrease as the misaligned distance gradually increases. The position shifting of z1’ 

should be less than 0.5 mm. Otherwise, the correlation coefficient is less than 0.8 and the 

reconstructed image quality will be unacceptable. 

 

5. Conclusion 

In conclusion, the proposed method is a novel algorithm based on the POFs in the Fresnel 

domain and significantly reduces the crosstalk for multiple-image encryption with position 

multiplexing. In addition, a lensless optical system based on the FrT could be constructed 

accordingly [24] to be advantageous of compactness and simplicity. Increasing multiple-image 

multiplexing encryption security is also achieved in this study. The effects on phase quantization 
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and the misalignment of the two POMs, which could happen in actual optical implementation, 

are also investigated. Optical experiments will be soon conducted in our future research. 
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List of figure captions: 

Fig. 1: (a) The flow chart of Gercherg-Saxton algorithm is used for performing phase retrieval if 

their intensities at their respective optical planes are known; (b) The flow chart of 

modified Gerchberg-Saxton algorithm. 

Fig. 2: Optical multiple-image encryption setup by position multiplexing based on cascaded 

phase-only masks in the Fresnel transform domain. 

Fig. 3: Block diagram of the proposed multiple-image encryption and position multiplexing. 

Fig. 4: Nine test images used in the proposed multiple-image multiplexing encryption. 

Fig. 5: (a) The noise-like POF recorded in 1POM . (b) The noise-like POF recorded in 2POM . 

Fig. 6: (a) The entire decrypted image with the position 3 0.4 mz =  in the reconstruction plane; 

(b) The enlarged decrypted image 3 1 1ˆ ( , )zg x y  corresponding to the original 

image 3 1 1( , )g x y in Figure 6(a); (c) The entire decrypted image with the position 

6 0.55 mz = in the reconstruction plane; (d) The enlarged decrypted image 6 1 1ˆ ( , )zg x y  

corresponding to the original image 6 1 1( , )g x y in Figure 6(c). 

Fig. 7: Comparison result between the proposed method and the Situ’s [20] in terms of the 

correlation coefficient. 

Fig. 8: The quantization effects represented by the correlation coefficients versus the encrypted 

images under using the eight, seven, and six-bit resolutions for the POFs. 

Fig. 9: The misalignment effects represented by the correlation coefficients versus the position 

shifting between two POMs. 
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Fig. 9 


